SN-CUO-ARABIC GUM COMPOSITION FOR RED TRACER PROJECTILE AMMUNITION POTENTIAL
(1) Pusat Penelitian Fisika, Lembaga Ilmu Pengetahuan Indonesia
(2) Research Center for Physics, Indonesian Institute of Sciences
(3) Research Center for Physics, Indonesian Institute of Sciences
(4) Research Center for Physics, Indonesian Institute of Sciences
(5) Research Center for Physics, Indonesian Institute of Sciences
(6) 
(7) Research Center for Physics, Indonesian Institute of Sciences
(8) Research for Appropriate Technology, Indonesian Institute of Sciences
(9) Ammunition Division, Pindad Ltd. (Persero)
(*) Corresponding Author
Abstract
Fundamentally, tracer projectile material based on pyrotechnic composition, and where the pyrotechnic was generally composed of fuel, oxidizer, and binder. The tin (Sn) material is one of the candidates for fuel material because tin has a low melting point, so this composition can ignite at low temperature, while the copper oxide (CuO) can emit the orange-red spectrum. This study aims to evaluate the thermal and spectrum character of Sn-CuO-AG-based composition. The characterization data of these samples was evaluated by tests of morphology and phase, enthalpy change, calorie energy, and spectrum emission. Based on this data, the 17Sn-68CuO-15AG sample was emitted a strong red color too, but this sample has a high or the longest exothermic process. Furthermore, the 27Sn-58CuO-15AG sample has emitted a weak red color with medium exothermic energy. Generally, the 22Sn-63CuO-15AG is more suitable than the two other compositions for the tracer projectile composition of ammunition, this material emits a strong red spectrum and low-calorie energy.
Full Text:
PDFReferences
Adliana, N., Bura, R. O., & Ruyat, Y. (2019). Analisis pengaruh karakteristik propelan terhadap balistik interior pada munisi kaliber kecil. Teknologi Persenjataan, 1(1), 39–62.
Agrawal, J. P. (2010). High Energy Materials: Propellants, Explosives, and Pyrotechnics (First). New Delhi: Wiley-VCH.
Anderson, C. S. (2020). Tin. U.S. Geological Survey, (1), 1–2.
Bailey, A., & Murray, S. G. (2000). Explosives, Propellants, and Pyrotechnics. Brassey's London. Retrieved from http://books.google.com/books?id=hANUAAAAMAAJ&pgis=1
Bofors, A. (1974). Analytical Methods for Powders and Explosives. Bofors AB Bofors.
Brown, M. E. (2004). Introduction to Thermal Analysis: Techniques and Application. Kluwer Academics Publisher. Retrieved from http://ebooks.springerlink.com
Buc, S. M., Adelman, G., & Adelman, S. (1993). Development of Alternate 7.62 mm Tracer Formulations (Vol. OMB No. 07). Maryland. https://doi.org/10.1090/dimacs/029/20
Chaudhary, A. L., Sheppard, D. A., Paskevicius, M., Pistidda, C., Dornheim, M., & Buckley, C. E. (2015). Reaction kinetic behaviour with relation to crystallite/grain size dependency in the Mg-Si-H system. Acta Materialia, 95, 244–253. https://doi.org/10.1016/j.actamat.2015.05.046
Conkling, J. A., & Mocella, C. J. (2019). Chemistry of Pyrotechnics: Basic Principles and Theory (Third). CRC Press: Taylor & Francis Group. https://doi.org/10.1201/9780429262135-10
Crouch, I. G. (2019). Body armour – New materials, new systems. Defence Technology, 15(3), 241–253. https://doi.org/10.1016/j.dt.2019.02.002
Douda, B. E. (1964). Theory of colored flame production (Vol. RDTN No. 7).
Ellern, H. (1968). Military and Civilian Pyrotechnics (First). Chemical Publishing Company, Inc.
Garner, J., Huang, X., Mishock, J., & Kostka, J. (2009). A Tracer Analysis for the M1002 Training Projectile.
Henry, D. J., & Laird, D. W. (2014). How old is my bronze cannon? A laboratory exercise linking analytical chemistry, spectroscopy, and metallurgy. Journal of Laboratory Chemical Education (Vol. 2). https://doi.org/10.5923/j.jlce.20140204.04
Hosseini, S. G., & Eslami, A. (2011). Investigation on the reaction of powdered tin as a metallic fuel with some pyrotechnic oxidizers. Propellants, Explosives, Pyrotechnics, 36(2), 175–181. https://doi.org/10.1002/prep.200900082
ITRI. (2020). Global resources and reserves: security of long term tin supply. Industrial Technology Research Institute, 1–23.
Masai, H., Takahashi, Y., & Fujiwara, T. (2009). Addition effect of SnO in optical property of Bi2 O3 -containing aluminoborate glass. Journal of Applied Physics, 105(083538). https://doi.org/10.1063/1.3115472
Meyerriecks, W., & Kosanke, K. L. (2003). Color Values and Spectra of the Principal Emitters in Colored Flames. Journal of Pyrotechnics, (18), 710–731.
National Research Council. (2003). Materials Research to Meet 21st Century Defense Needs. Materials Research to Meet 21st Century Defense Needs. Washington D.C: National Academies Press. https://doi.org/10.17226/10631
Sadek, R., Kassem, M., Abdo, M., & Elbasuney, S. (2016). Spectrally Adapted Red Flares With Enhanced Color Quality and Luminous Intensity. The International Conference on Chemical and Environmental Engineering, 8(13), 282–303. https://doi.org/10.21608/iccee.2016.35126
Sadek, R., Kassem, M., Abdo, M., & Elbasuney, S. (2017). Novel yellow colored flame compositions with superior spectral performance. Defence Technology, 13(1), 33–39. https://doi.org/10.1016/j.dt.2016.12.001
Tamaekong, N., Liewhiran, C., & Phanichphant, S. (2014). Synthesis of thermally spherical CuO nanoparticles. Journal of Nanomaterials, 1–5. https://doi.org/10.1155/2014/507978
Yin, G., Sun, J., Zhang, F., Yu, W., Peng, F., Sun, Y., … He, D. (2019). Enhanced gas selectivity induced by surface active oxygen in SnO/SnO 2 heterojunction structures at different temperatures. RSC Advances, 9(4), 1903–1908. https://doi.org/10.1039/c8ra09965k
DOI: https://doi.org/10.33172/jp.v7i1.938
INDEXED BY:
Office Address:
Lembaga Penelitian dan Pengabdian Kepada Masyarakat
Republic of Indonesia Defense University
Jl. Salemba Raya No.14, Paseban,Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10440, Indonesia
Email: jurnal.unhan@idu.ac.id
Jurnal Pertahanan: Media Informasi tentang Kajian dan Strategi Pertahanan yang Mengedepankan Identity, Nasionalism dan Integrity is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.