THE BIOMIMETIC FIN PERFORMANCE EVALUATION FOR AN EFFICIENT AUTONOMOUS UNDERWATER VEHICLE (AUV) TO SUPPORT THE REVOLUTION IN MILITARY AFFAIRS (RMA) IN UNDERWATER DEFENSE
(1) Universitas Pertahanan Republik Indonesia
(2) Universitas Pertahanan Republik Indonesia
(*) Corresponding Author
Abstract
The world is facing the global trend of Industry 4.0 in the manufacturing sectors. The concept of the Internet of Underwater Thing (IoUT) presents the trends in the underwater region. The Autonomous Underwater Vehicle (AUV) as a data collector and transmitter becomes the central component in the connected system of the IoUT. The efficiency of the platform is crucial to lengthening the range and duration of the mission. The biomimetic method of utilizing the caudal fin propulsion could enhance the efficiency of the small and low-speed AUV. From the defense perspective, there is a concept of Revolution in Military Affairs (RMA) that supports technological modernization for defense purposes. Technically, this study aims to combine the technical aspects of mechanical engineering and the defense concept of RMA in the technological advancement of AUV for the advanced and efficient defense strategy in the underwater region. The evaluations involved numerical simulation with Computational Fluid Dynamics (CFD) method. The simulation results show that the fully tapered flexible fin enhances the efficiency by 25%, while the narrow flexible fin enhances the efficiency by 30%. These results indicate that a flexible tapered fin should be the primary consideration in designing the high-efficiency biomimetic fin. The visualization of the force vectors shows that the flexibility of the fin acts as a thrust vectoring factor that directs more force vectors in the thrust direction. This study supports the RMA concept implementation by technological modernization, such as efficient biomimetic AUV development, to develop doctrines in the State's defense in the underwater region.
Full Text:
PDFReferences
Afanasyeva, I. N., & Lantsova, I. Y. (2017). Numerical Simulation of An Elastic Structure Behavior Under Transient Fluid Flow Excitation. AIP Conference Proceedings, 1800(1). AIP Publishing LLC AIP Publishing. https://doi.org/10.1063/1.4973054
Aguirre, F., Vargas, S., Valdés, D., & Tornero, J. (2017). State of the Art of Parameters for Mechanical Design of an Autonomous Underwater Vehicle. International Journal of Oceans and Oceanography, 11(1), 89–103.
Aini, R. Q., & Triantama, F. (2021). The Implementation of South Korea’s Military Technology Reform in The Perspective of Techno-nationalism. Sospol Jurnal Sosial Politik, 7(1), 63–76. Retrieved from https://ejournal.umm.ac.id/index.php/sospol/article/view/14581/9176
Ariffin, A. H., & Ahmad, K. A. (2020). Computational Fluid Dynamic (CFD) Simulation of Synthetic Jet Cooling: A Review. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 72(2), 103–112. https://doi.org/10.37934/ARFMTS.72.2.103112
Asian Development Bank. (2013). Proposed Loan and Administration of Grant Republic of Indonesia: Coral Reef Rehabilitation and Management Program—Coral Triangle Initiative Project (No. 46421). Retrieved from https://www.adb.org/sites/default/files/project-document/79638/46421-001-rrp.pdf
Badshah, M., Badshah, S., VanZwieten, J., Jan, S., Amir, M., & Malik, S. A. (2019). Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine Under the Effect of Velocity Profile. Energies, 12(11). https://doi.org/10.3390/EN12112217
Bitzinger, R. A. (2008). The Revolution in Military Affairs and the Global Defence Industry: Reactions and Interactions. Security Challenges, 4(4), 1–11. Retrieved from https://www.jstor.org/stable/pdf/26459803.pdf?refreqid=excelsior%3A2b53b829c0ba743e8f347baddc88772d
Demeke, G. K., Asfaw, D. H., & Shiferaw, Y. S. (2019). 3D Hydrodynamic Modelling Enhances the Design of Tendaho Dam Spillway, Ethiopia. Water, 11(1). https://doi.org/10.3390/W11010082
Edge, C., Enan, S. S., Fulton, M., Hong, J., Mo, J., Barthelemy, K., … Sattar, J. (2020). Design and Experiments with LoCO AUV: A Low Cost Open-Source Autonomous Underwater Vehicle. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/IROS45743.2020.9341007
Fiester, C., Gomez-Ibanez, D., Grund, M., Purcell, M., Jaffre, F., Forrester, N., … Stokey, R. (2019). A Modular, Compact, and Efficient Next Generation REMUS 600 AUV. OCEANS 2019, 2019-June. Marseille: OCEANS 2019. https://doi.org/10.1109/OCEANSE.2019.8867248
Fish, F. E. (2013). Advantages of Natural Propulsive Systems. Marine Technology Society Journal, 47(5), 37–44.
González-GarcÃa, J., Gómez-Espinosa, A., Cuan-Urquizo, E., GarcÃa-Valdovinos, L. G., Salgado-Jiménez, T., & Cabello, J. A. E. (2020). Autonomous Underwater Vehicles: Localization, Navigation, and Communication for Collaborative Missions. Applied Sciences, 10(4), 1–37. https://doi.org/https://doi.org/10.3390/app10041256
Gray, C. S. (2006). Recognizing and Understanding Revolutionary Change in Warfare: The Sovereignty of Context. California: CreateSpace Independent Publishing Platform.
Heidemann, J., Stojanovic, M., & Zorzi, M. (2012). Underwater sensor Networks: Applications, Advances and Challenges. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 158–175. https://doi.org/10.1098/RSTA.2011.0214
Heo, J., Kim, J., & Kwon, Y. (2017). Technology Development of Unmanned Underwater Vehicles (UUVs). Journal of Computer and Communications, 5(7), 28–35. https://doi.org/10.4236/JCC.2017.57003
Herdijanto, T., Mulyadi, & Susilo, A. K. (2019). Development Strategy of Revolution in Military Affair Concept by Indonesia Armed Forces (TNI) in The South China Sea. Journal of Defense Resources Management, 10(2), 40–61. Retrieved from https://www.proquest.com/docview/2339150412?accountid=17242&forcedol=true&forcedol=true
Jaya, A. S., & Kartidjo, M. (2017). Preliminary Efficiency Performance Analysis of Lift-based Fin in Low-speed Flow and Low-frequency Tail-beat Based on Numerical Simulation. Journal of Unmanned System Technology, 5(1), 7–12. https://doi.org/10.21535/JUST.V5I1.964
Jaya, A. S., & Kartidjo, M. W. (2019). Performance Evaluation of the Shape and Flexibility Combination of the Underwater Biomimetic Fin Propulsion. The 15th International Conference on Intelligent Unmanned Systems (ICIUS 2019). Beijing.
Junaidin, B. (2017). Numerical Simulation Flexible Wingof Hale UAV Using Two-Way Fluid Structure Interaction Method. Jurnal Angkasa, 9(1), 19–30. https://doi.org/10.28989/ANGKASA.V9I1.108
Kao, C. C., Lin, Y. S., Wu, G. De, & Huang, C. J. (2017). A Comprehensive Study on The Internet of Underwater Things: Applications, Challenges, and Channel Models. Sensors (Switzerland), 17(7). https://doi.org/10.3390/S17071477
Khalid, S. S., Zhang, L., Zhang, X. W., & Sun, K. (2013). Three-dimensional Numerical Simulation of a Vertical Axis Tidal Turbine Using the Two-way Fluid Structure Interaction Approach. Journal of Zhejiang University-Science A, 14(8), 574–582. https://doi.org/10.1631/JZUS.A1300082/FIGURES/9
Khalin, A., & Kizilova, N. (2019). Performance Comparison of Different Aerodynamic Shapes for Autonomous Underwater Vehicles. Archive of Mechanical Engineering, 66(2), 171–189. https://doi.org/10.24425/AME.2019.128443
Liu, G., Liu, S., Xie, Y., Leng, D., & Li, G. (2020). The Analysis of Biomimetic Caudal Fin Propulsion Mechanism with CFD. Applied Bionics and Biomechanics, 2020. https://doi.org/10.1155/2020/7839049
Luo, Y., Xiao, Q., Shi, G., Pan, G., & Chen, D. (2020). The Effect of Variable Stiffness of Tuna-like Fish Body and Fin on Swimming Performance. Bioinspiration & Biomimetics, 16. https://doi.org/10.1088/1748-3190/ABB3B6
Mary, D. R. K., Lee, J., Ko, E., Shin, S.-Y., Namgung, J.-I., Yum, S.-H., & Park, S.-H. (2020). Underwater Network Management System in Internet of Underwater Things: Open Challenges, Benefits, and Feasible Solution. Electronics, 9(7). https://doi.org/10.3390/ELECTRONICS9071142
Metz, S., & Kievit, J. (1995). Strategy and The Revolution in Military Affairs: from Theory to Policy. Carlisle. Retrieved from https://www.jstor.org/stable/resrep11727?seq=13#metadata_info_tab_contents
Mi, B., & Zhan, H. (2020). Review of Numerical Simulations on Aircraft Dynamic Stability Derivatives. Archives of Computational Methods in Engineering, 27(5), 1515–1544. https://doi.org/10.1007/S11831-019-09370-8
Nainggolan, J. H. P. (2018). Military Application of Unmanned Underwater Vehicles: In Quest of A New Legal Regime? Indonesian Journal of International Law, 16(1), 61–83. https://doi.org/10.17304/ijil.vol16.1.770
Paolucci, L., Grasso, E., Grasso, F., König, N., Pagliai, M., Ridolfi, A., … Allotta, B. (2019). Development and Testing of an Efficient and Cost-effective Underwater Propulsion System. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233(10). London: SAGE Publications. https://doi.org/10.1177/0959651819829627
Pfeil, S., Katzer, K., Kanan, A., Mersch, J., Zimmermann, M., Kaliske, M., & Gerlach, G. (2020). A Biomimetic Fish Fin-Like Robot Based on Textile Reinforced Silicone. Micromachines, 11(3). https://doi.org/10.3390/MI11030298
Piskur, P., Szymak, P., Kitowski, Z., & Flis, L. (2020). Influence of Fin’s Material Capabilities on the Propulsion System of Biomimetic Underwater Vehicle. Polish Maritime Research, 27(4), 179–185. https://doi.org/10.2478/POMR-2020-0078
Pourshahbaz, H., Abbasi, S., Pandey, M., Pu, J. H., Taghvaei, P., & Tofangdar, N. (2020). Morphology and Hydrodynamics Numerical Simulation Around Groynes. ISH Journal of Hydraulic Engineering. https://doi.org/10.1080/09715010.2020.1830000
Quinn, D. B., Lauder, G. V., & Smits, A. J. (2015). Maximizing the Efficiency of a Flexible Propulsor Using Experimental Optimization. Journal of Fluid Mechanics, 767, 430–448. https://doi.org/10.1017/JFM.2015.35
Rafikasari, A. (2021). Strategi Diplomasi Pertahanan Indonesia melalui Kerja Sama Keantariksaan dalam Era Revolusi Industri 4.0. Jurnal KKPA Kajian Kebijakan Penerbangan Dan Antariksa, 2(1), 27–41. https://doi.org/10.30536/jkkpa.v2n1.2
Rojko, A. (2017). Industry 4.0 Concept: Background and Overview. International Journal of Interactive Mobile Technologies, 11(5), 77–90. https://doi.org/10.3991/IJIM.V11I5.7072
Santosa, R. N. P., Budiarto, A., & Azhari, Y. (2021). The Phenomenon of Unnamed Undervater Vechincle (Uuv) In the Indonesian Sea: How’s Indonesia Maritime Defense Readiness? International Journal of Arts and Social Science, 4(6), 205–215. Retrieved from www.ijassjournal.com
Shi, G., Li, R., & Xiao, Q. (2019). Bio-inspired Propulsion in Ocean Engineering: Learning from Nature. VIII International Conference on Computational Methods in Marine Engineering, 71–82. CIMNE. Retrieved from https://upcommons.upc.edu/handle/2117/328878
Xia, H., Wang, P., Jin, Z., An, X., & Ding, Y. (2020). Maneuverability Analysis of Thrust Vectoring Ducted Propeller with Deflector. Ocean Engineering, 213. https://doi.org/10.1016/J.OCEANENG.2020.107614
Yang, Y.-C., Ouyang, Y., Zhang, N., Yu, Q.-J., & Arowo, M. N. (2019). A Review on Computational Fluid Dynamic Simulation for Rotating Packed Beds. Journal of Chemical Technology and Biotechnology, 94(4). https://doi.org/10.1002/JCTB.5880
Zhang, Y., Kieft, B., Stanway, M. J., McEwen, R. S., Hobson, B. W., Bellingham, J. G., … Chavez, F. P. (2017). Isotherm Tracking by an Autonomous Underwater Vehicle in Drift Mode. IEEE Journal of Oceanic Engineering, 42(4), 808–817. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7786847
DOI: https://doi.org/10.33172/jp.v7i3.1262
INDEXED BY:
Office Address:
Lembaga Penelitian dan Pengabdian Kepada Masyarakat
Republic of Indonesia Defense University
Jl. Salemba Raya No.14, Paseban,Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10440, Indonesia
Email: jurnal.unhan@idu.ac.id
Jurnal Pertahanan: Media Informasi tentang Kajian dan Strategi Pertahanan yang Mengedepankan Identity, Nasionalism dan Integrity is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.