Mechanisms of Antibiotic Effectiveness against Pathogenic Bacteria: A Literature Review

Haidar Faiz Gumay(1), Pradipta Nararya Wardhana(2), Nadya Farah(3*),

(1) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Kompleks IPSC Sentul, Bogor, 16810, Indonesia
(2) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Kompleks IPSC Sentul, Bogor, 16810, Indonesia
(3) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Kompleks IPSC Sentul, Bogor, 16810, Indonesia
(*) Corresponding Author

Abstract


Antibiotics have become one of the most influential discoveries in the history of medicine due to their ability in reducing mortality rates from bacterial infections. In general, the mechanism of antibiotics can be divided into two types: bacteriostatic, which inhibits bacterial growth, and bactericidal, which kills bacteria directly. This article reviews various literatures on the effectiveness of several antibiotics that are often prescribed in health services such as amoxicillin, ciprofloxacin, metronidazole, azithromycin, ceftriaxone, amikacin, and gentamicin, as well as their specific correlation with pathogenic bacteria that cause infection. We discovered that the effectiveness of antibiotics is greatly influenced by molecular targets, dosages, environmental conditions, and usage patterns. Inappropriate use, in terms of antibiotic selection and dosage, has been shown to contribute to the emergence of resistance through gene mutation mechanisms and metabolic changes in bacteria. This situation has made antibiotic resistance a serious challenge in clinical practice and global public health. Therefore, a more rational, selective, and evidence-based antibiotic usage strategy is needed to maintain the effectiveness of therapy and reduce the rate of pathogenic bacterial resistance.

Keywords


Antibiotic; Bacteria; Effectiveness; Mechanisms

Full Text:

PDF

References


Al Kraiem, A. A., Yang, G., al Kraiem, F., & Chen, T. (2018). Challenges associated with ceftriaxone resistance in Salmonella. Frontiers in Life Science, 11(1), 26–34. https://doi.org/10.1080/21553769.2018.1491427

Bernatová, S., Samek, O., Pilát, Z., Šerý, M., Ježek, J., Jákl, P., Šiler, M., Krzyžánek, V., Zemánek, P., Holá, V., Dvořáčková, M., & Růžička, F. (2013). Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules, 18(11), 13188–13199. https://doi.org/10.3390/molecules181113188

Browne, A. J., Chipeta, M. G., Haines-Woodhouse, G., Kumaran, E. P. A., Hamadani, B. H. K., Zaraa, S., Henry, N. J., Deshpande, A., Reiner, R. C., Day, N. P. J., Lopez, A. D., Dunachie, S., Moore, C. E., Stergachis, A., Hay, S. I., & Dolecek, C. (2021). Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study. The Lancet Planetary Health, 5(12), e893–e904. https://doi.org/10.1016/S2542-5196(21)00280-1

Chan, K., Ledesma, K. R., Wang, W., & Tam, V. H. (2020). Characterization of amikacin drug exposure and nephrotoxicity in an animal model. Antimicrobial Agents and Chemotherapy, 64(9). https://doi.org/10.1128/AAC.00859-20

Chen, C., Chen, Y., Wu, P., & Chen, B. (2014). Update on new medicinal applications of gentamicin: Evidence-based review. Journal of the Formosan Medical Association, 113(2), 72–82. https://doi.org/10.1016/j.jfma.2013.10.002

Chen, R., Li, J., Wang, C., Zhou, P., Song, Q., Wu, J., Li, Q., Li, H., Gong, Y., Zeng, T., Fang, Y., & Yin, X. (2025). Global antibiotic prescription practices in hospitals and associated factors: a systematic review and meta-analysis. Journal of Global Health, 15, 04023. https://doi.org/10.7189/jogh.15.04023

Dingsdag, S. A., & Hunter, N. (2018). Metronidazole: an update on metabolism, structure–cytotoxicity and resistance mechanisms. Journal of Antimicrobial Chemotherapy, 73(2), 265–279. https://doi.org/10.1093/jac/dkx351

Ghotaslou, R., Bannazadeh Baghi, H., Alizadeh, N., Yekani, M., Arbabi, S., & Memar, M. Y. (2018). Mechanisms of Bacteroides fragilis resistance to metronidazole. Infection, Genetics and Evolution, 64, 156–163. https://doi.org/10.1016/j.meegid.2018.06.020

Gilbert, D. N., Eubanks, N., & Jackson, J. (1977). Comparison of amikacin and gentamicin in the treatment of urinary tract infections. The American Journal of Medicine, 62(6), 924–929. https://doi.org/10.1016/0002-9343(77)90662-3

Gomes, C., Ruiz-Roldán, L., Mateu, J., Ochoa, T. J., & Ruiz, J. (2019). Azithromycin resistance levels and mechanisms in Escherichia coli. Scientific Reports, 9(1), 6089. https://doi.org/10.1038/s41598-019-42423-3

Gould, K. (2016). Antibiotics: from prehistory to the present day. Journal of Antimicrobial Chemotherapy, 71(3), 572–575. https://doi.org/10.1093/jac/dkv484

Heidary, M., Ebrahimi Samangani, A., Kargari, A., Kiani Nejad, A., Yashmi, I., Motahar, M., Taki, E., & Khoshnood, S. (2022). Mechanism of action, resistance, synergism, and clinical implications of azithromycin. Journal of Clinical Laboratory Analysis, 36(6). https://doi.org/10.1002/jcla.24427

Hernández Ceruelos, A., Romero-Quezada, L. C., Ruvalcaba Ledezma, J. C., & López Contreras, L. (2019). Therapeutic uses of metronidazole and its side effects: an update. European Review for Medical and Pharmacological Sciences, 23(1), 397–401. https://doi.org/10.26355/eurrev_201901_16788

Hinojosa Guerra, M. M., Oller Alberola, I., Malato Rodriguez, S., Agüera López, A., Acevedo Merino, A., & Quiroga Alonso, J. M. (2019). Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Research, 156, 232–240. https://doi.org/10.1016/j.watres.2019.02.055

Ikuta, K. S., Swetschinski, L. R., Robles Aguilar, G., Sharara, F., Mestrovic, T., Gray, A. P., Davis Weaver, N., Wool, E. E., Han, C., Gershberg Hayoon, A., Aali, A., Abate, S. M., Abbasi-Kangevari, M., Abbasi-Kangevari, Z., Abd-Elsalam, S., Abebe, G., Abedi, A., Abhari, A. P., Abidi, H., … Naghavi, M. (2022). Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 400(10369), 2221–2248. https://doi.org/10.1016/S0140-6736(22)02185-7

Ilgin, S., Can, O. D., Atli, O., Ucel, U. I., Sener, E., & Guven, I. (2015). Ciprofloxacin-induced neurotoxicity: evaluation of possible underlying mechanisms. Toxicology Mechanisms and Methods, 25(5), 374–381. https://doi.org/10.3109/15376516.2015.1026008

Ishak, A., Mazonakis, N., Spernovasilis, N., Akinosoglou, K., & Tsioutis, C. (2025). Bactericidal versus bacteriostatic antibacterials: clinical significance, differences and synergistic potential in clinical practice. Journal of Antimicrobial Chemotherapy, 80(1), 1–17. https://doi.org/10.1093/jac/dkae380

Kovacevic, T., Avram, S., Milakovic, D., Spiric, N., & Kovacevic, P. (2016). Therapeutic monitoring of amikacin and gentamicin in critically and noncritically ill patients. Journal of Basic and Clinical Pharmacy, 7(3), 65. https://doi.org/10.4103/0976-0105.183260

Ojkic, N., Lilja, E., Direito, S., Dawson, A., Allen, R. J., & Waclaw, B. (2020). A roadblock-and-kill mechanism of action model for the DNA-targeting antibiotic ciprofloxacin. Antimicrobial Agents and Chemotherapy, 64(9). https://doi.org/10.1128/AAC.02487-19

Pankey, G. A., & Sabath, L. D. (2004). Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram‐positive bacterial infections. Clinical Infectious Diseases, 38(6), 864–870. https://doi.org/10.1086/381972

Raaijmakers, J., Schildkraut, J. A., Hoefsloot, W., & van Ingen, J. (2021). The role of amikacin in the treatment of nontuberculous mycobacterial disease. Expert Opinion on Pharmacotherapy, 22(15), 1961–1974. https://doi.org/10.1080/14656566.2021.1953472

Rehman, A., Patrick, W. M., & Lamont, I. L. (2019). Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. Journal of Medical Microbiology, 68(1), 1–10. https://doi.org/10.1099/jmm.0.000873

Shariati, A., Arshadi, M., Khosrojerdi, M. A., Abedinzadeh, M., Ganjalishahi, M., Maleki, A., Heidary, M., & Khoshnood, S. (2022). The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1025633

Sun, P., Zhao, T., Xiao, H., Wang, J., Zhang, S., & Cao, X. (2021). The bioavailability and pharmacokinetics of an amoxicillin–clavulanic acid granular combination after intravenous and oral administration in swine. Journal of Veterinary Pharmacology and Therapeutics, 44(1), 126–130. https://doi.org/10.1111/jvp.12916

Wu, M., Li, B., Guo, Q., Xu, L., Zou, Y., Zhang, Y., Zhan, M., Xu, B., Ye, M., Yu, F., Zhang, Z., & Chu, H. (2019). Detection and molecular characterisation of amikacin-resistant Mycobacterium abscessus isolated from patients with pulmonary disease. Journal of Global Antimicrobial Resistance, 19, 188–191. https://doi.org/10.1016/j.jgar.2019.05.016

Yang, J. (2020). Mechanism of azithromycin in airway diseases. Journal of International Medical Research, 48(6). https://doi.org/10.1177/0300060520932104

Yimenu, D. K., Emam, A., Elemineh, E., & Atalay, W. (2019). Assessment of antibiotic prescribing patterns at outpatient pharmacy using World Health Organization prescribing indicators. Journal of Primary Care & Community Health, 10. https://doi.org/10.1177/2150132719886942


Refbacks

  • There are currently no refbacks.



Image
Office Address:
Faculty of Military Mathematics and Natural Sciences
Republic of Indonesia Defense University
Indonesian Peace and Security Center Complex, Sentul, Bogor 16810, Indonesia
Email: munisi.unhanri@gmail.com | WhatsApp: +6285742313964


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Munisi: Military Mathematics and Natural Sciences View