Mechanisms of Antibiotic Effectiveness against Pathogenic Bacteria: A Literature Review
(1) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Kompleks IPSC Sentul, Bogor, 16810, Indonesia
(2) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Kompleks IPSC Sentul, Bogor, 16810, Indonesia
(3) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Kompleks IPSC Sentul, Bogor, 16810, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Al Kraiem, A. A., Yang, G., al Kraiem, F., & Chen, T. (2018). Challenges associated with ceftriaxone resistance in Salmonella. Frontiers in Life Science, 11(1), 26–34. https://doi.org/10.1080/21553769.2018.1491427
Bernatová, S., Samek, O., Pilát, Z., Šerý, M., Ježek, J., Jákl, P., Šiler, M., Krzyžánek, V., Zemánek, P., Holá, V., Dvořáčková, M., & Růžička, F. (2013). Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules, 18(11), 13188–13199. https://doi.org/10.3390/molecules181113188
Browne, A. J., Chipeta, M. G., Haines-Woodhouse, G., Kumaran, E. P. A., Hamadani, B. H. K., Zaraa, S., Henry, N. J., Deshpande, A., Reiner, R. C., Day, N. P. J., Lopez, A. D., Dunachie, S., Moore, C. E., Stergachis, A., Hay, S. I., & Dolecek, C. (2021). Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study. The Lancet Planetary Health, 5(12), e893–e904. https://doi.org/10.1016/S2542-5196(21)00280-1
Chan, K., Ledesma, K. R., Wang, W., & Tam, V. H. (2020). Characterization of amikacin drug exposure and nephrotoxicity in an animal model. Antimicrobial Agents and Chemotherapy, 64(9). https://doi.org/10.1128/AAC.00859-20
Chen, C., Chen, Y., Wu, P., & Chen, B. (2014). Update on new medicinal applications of gentamicin: Evidence-based review. Journal of the Formosan Medical Association, 113(2), 72–82. https://doi.org/10.1016/j.jfma.2013.10.002
Chen, R., Li, J., Wang, C., Zhou, P., Song, Q., Wu, J., Li, Q., Li, H., Gong, Y., Zeng, T., Fang, Y., & Yin, X. (2025). Global antibiotic prescription practices in hospitals and associated factors: a systematic review and meta-analysis. Journal of Global Health, 15, 04023. https://doi.org/10.7189/jogh.15.04023
Dingsdag, S. A., & Hunter, N. (2018). Metronidazole: an update on metabolism, structure–cytotoxicity and resistance mechanisms. Journal of Antimicrobial Chemotherapy, 73(2), 265–279. https://doi.org/10.1093/jac/dkx351
Ghotaslou, R., Bannazadeh Baghi, H., Alizadeh, N., Yekani, M., Arbabi, S., & Memar, M. Y. (2018). Mechanisms of Bacteroides fragilis resistance to metronidazole. Infection, Genetics and Evolution, 64, 156–163. https://doi.org/10.1016/j.meegid.2018.06.020
Gilbert, D. N., Eubanks, N., & Jackson, J. (1977). Comparison of amikacin and gentamicin in the treatment of urinary tract infections. The American Journal of Medicine, 62(6), 924–929. https://doi.org/10.1016/0002-9343(77)90662-3
Gomes, C., Ruiz-Roldán, L., Mateu, J., Ochoa, T. J., & Ruiz, J. (2019). Azithromycin resistance levels and mechanisms in Escherichia coli. Scientific Reports, 9(1), 6089. https://doi.org/10.1038/s41598-019-42423-3
Gould, K. (2016). Antibiotics: from prehistory to the present day. Journal of Antimicrobial Chemotherapy, 71(3), 572–575. https://doi.org/10.1093/jac/dkv484
Heidary, M., Ebrahimi Samangani, A., Kargari, A., Kiani Nejad, A., Yashmi, I., Motahar, M., Taki, E., & Khoshnood, S. (2022). Mechanism of action, resistance, synergism, and clinical implications of azithromycin. Journal of Clinical Laboratory Analysis, 36(6). https://doi.org/10.1002/jcla.24427
Hernández Ceruelos, A., Romero-Quezada, L. C., Ruvalcaba Ledezma, J. C., & López Contreras, L. (2019). Therapeutic uses of metronidazole and its side effects: an update. European Review for Medical and Pharmacological Sciences, 23(1), 397–401. https://doi.org/10.26355/eurrev_201901_16788
Hinojosa Guerra, M. M., Oller Alberola, I., Malato Rodriguez, S., Agüera López, A., Acevedo Merino, A., & Quiroga Alonso, J. M. (2019). Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Research, 156, 232–240. https://doi.org/10.1016/j.watres.2019.02.055
Ikuta, K. S., Swetschinski, L. R., Robles Aguilar, G., Sharara, F., Mestrovic, T., Gray, A. P., Davis Weaver, N., Wool, E. E., Han, C., Gershberg Hayoon, A., Aali, A., Abate, S. M., Abbasi-Kangevari, M., Abbasi-Kangevari, Z., Abd-Elsalam, S., Abebe, G., Abedi, A., Abhari, A. P., Abidi, H., … Naghavi, M. (2022). Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 400(10369), 2221–2248. https://doi.org/10.1016/S0140-6736(22)02185-7
Ilgin, S., Can, O. D., Atli, O., Ucel, U. I., Sener, E., & Guven, I. (2015). Ciprofloxacin-induced neurotoxicity: evaluation of possible underlying mechanisms. Toxicology Mechanisms and Methods, 25(5), 374–381. https://doi.org/10.3109/15376516.2015.1026008
Ishak, A., Mazonakis, N., Spernovasilis, N., Akinosoglou, K., & Tsioutis, C. (2025). Bactericidal versus bacteriostatic antibacterials: clinical significance, differences and synergistic potential in clinical practice. Journal of Antimicrobial Chemotherapy, 80(1), 1–17. https://doi.org/10.1093/jac/dkae380
Kovacevic, T., Avram, S., Milakovic, D., Spiric, N., & Kovacevic, P. (2016). Therapeutic monitoring of amikacin and gentamicin in critically and noncritically ill patients. Journal of Basic and Clinical Pharmacy, 7(3), 65. https://doi.org/10.4103/0976-0105.183260
Ojkic, N., Lilja, E., Direito, S., Dawson, A., Allen, R. J., & Waclaw, B. (2020). A roadblock-and-kill mechanism of action model for the DNA-targeting antibiotic ciprofloxacin. Antimicrobial Agents and Chemotherapy, 64(9). https://doi.org/10.1128/AAC.02487-19
Pankey, G. A., & Sabath, L. D. (2004). Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram‐positive bacterial infections. Clinical Infectious Diseases, 38(6), 864–870. https://doi.org/10.1086/381972
Raaijmakers, J., Schildkraut, J. A., Hoefsloot, W., & van Ingen, J. (2021). The role of amikacin in the treatment of nontuberculous mycobacterial disease. Expert Opinion on Pharmacotherapy, 22(15), 1961–1974. https://doi.org/10.1080/14656566.2021.1953472
Rehman, A., Patrick, W. M., & Lamont, I. L. (2019). Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. Journal of Medical Microbiology, 68(1), 1–10. https://doi.org/10.1099/jmm.0.000873
Shariati, A., Arshadi, M., Khosrojerdi, M. A., Abedinzadeh, M., Ganjalishahi, M., Maleki, A., Heidary, M., & Khoshnood, S. (2022). The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1025633
Sun, P., Zhao, T., Xiao, H., Wang, J., Zhang, S., & Cao, X. (2021). The bioavailability and pharmacokinetics of an amoxicillin–clavulanic acid granular combination after intravenous and oral administration in swine. Journal of Veterinary Pharmacology and Therapeutics, 44(1), 126–130. https://doi.org/10.1111/jvp.12916
Wu, M., Li, B., Guo, Q., Xu, L., Zou, Y., Zhang, Y., Zhan, M., Xu, B., Ye, M., Yu, F., Zhang, Z., & Chu, H. (2019). Detection and molecular characterisation of amikacin-resistant Mycobacterium abscessus isolated from patients with pulmonary disease. Journal of Global Antimicrobial Resistance, 19, 188–191. https://doi.org/10.1016/j.jgar.2019.05.016
Yang, J. (2020). Mechanism of azithromycin in airway diseases. Journal of International Medical Research, 48(6). https://doi.org/10.1177/0300060520932104
Yimenu, D. K., Emam, A., Elemineh, E., & Atalay, W. (2019). Assessment of antibiotic prescribing patterns at outpatient pharmacy using World Health Organization prescribing indicators. Journal of Primary Care & Community Health, 10. https://doi.org/10.1177/2150132719886942
Refbacks
- There are currently no refbacks.
![]() | Office Address: Faculty of Military Mathematics and Natural Sciences Republic of Indonesia Defense University Indonesian Peace and Security Center Complex, Sentul, Bogor 16810, Indonesia Email: munisi.unhanri@gmail.com | WhatsApp: +6285742313964 |

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
| Munisi: Military Mathematics and Natural Sciences View |



