Moderator Optimisation in Core Design of Small Modular – Molten Salt Reactor for Military Submarines
(1) Department of Physics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
(2) Department of Physics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
(3) Department of Physics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
(4) Department of Physics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
(5) Department of Physics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
(6) Department of Physics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
(7) Research Center for Nuclear Reactor Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Tangerang Selatan, Indonesia
(8) Department of Nuclear Engineering, Faculty of Engineering, Gadjah Mada University, Yogyakarta, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Alzamly, M. A., Aziz, M., Gadallah, A. R. A., Badawi, A. A., & Gabal, H. A. (2020). Burnup analysis for HTR-10 reactor core loaded with uranium and thorium oxide. Nuclear Engineering and Technology, 52(4), 674–680. http://inis.iaea.org/search/search.aspx?orig_q=RN:51108555
Carelli, M. D., & Ingersoll, D. T. (2021). Handbook of Small Modular Nuclear Reactors. https://api.semanticscholar.org/CorpusID:195256101
Dwijayanto, R. A. P., Oktavian, M. R., Putra, M. Y. A., & Harto, A. W. (2021). Model comparison of passive compact-molten salt reactor neutronic design using MCNP6 and Serpent-2. Atom Indonesia, 47(3), 191–197. http://inis.iaea.org/search/search.aspx?orig_q=RN:53100342
Fiorina, C., Aufiero, M., Cammi, A., Franceschini, F., Krepel, J., Luzzi, L., Mikityuk, K., & Ricotti, M. E. (2013). Investigation of the MSFR core physics and fuel cycle characteristics. Progress in Nuclear Energy, 68, 153–168. https://doi.org/10.1016/j.pnucene.2013.06.006
Hirdaris, S. E., Cheng, Y. F., Shallcross, P., Bonafoux, J., Carlson, D., Prince, B., & Sarris, G. A. (2014). Considerations on the potential use of Nuclear Small Modular Reactor (SMR) technology for merchant marine propulsion. Ocean Engineering, 79, 101–130. https://doi.org/https://doi.org/10.1016/j.oceaneng.2013.10.015
International Atomic Energy Agency. (2005). Thorium fuel cycle : potential benefits and challenges. International Atomic Energy Agency.
Khlopkin, N. S., & Zotov, A. P. (1997). Merchant marine nuclear-powered vessels. Nuclear Engineering and Design, 173(1), 201–205. https://doi.org/https://doi.org/10.1016/S0029-5493(97)00109-X
Kuntoro, I., Pinem, S., & Sembiring. Tagor Malem. (2023). Pengenalan Ilmu Fisika dalam Operasi Reaktor Nuklir. Badan Riset dan Inovasi Nasional. https://doi.org/https://doi.org/10.55981/brin.584
Leblanc, D., & Popoff, C. (2012, September). Using Molten Salt Nuclear Reactors in the Oil Sands. 2012 World Heavy Oil Congress.
Mitenkov, F. M., & Polunichev, V. I. (1997). Small nuclear heat and power co-generation stations and water desalination complexes on the basis of marine reactor plants. Nuclear Engineering and Design, 173(1), 183–191. https://doi.org/https://doi.org/10.1016/S0029-5493(97)00108-8
Rykhlevskii, A., Bae, J. W., & Huff, K. D. (2019). Modeling and simulation of online reprocessing in the thorium-fueled molten salt breeder reactor. Annals of Nuclear Energy, 128, 366–379. https://doi.org/https://doi.org/10.1016/j.anucene.2019.01.030
Jaradat, S. Q. M. (2015). Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle. https://scholarsmine.mst.edu/doctoral_dissertations/2448
Serp, J., Allibert, M., Ghetta, V., Heuer, D., Merle-Lucotte, E., Benes, O., Delpech, S., Feynberg, O., Ignatiev, V., Holcomb, D., Kloosterman, J. L., Luzzi, L., Uhlir, J., Yoshioka, R., & Zhimin, D. (2014). The molten salt reactor (MSR) in generation IV: Overview and perspectives. Progress in Nuclear Energy, 308–319. http://inis.iaea.org/search/search.aspx?orig_q=RN:47102699
Shultis, J. K., & Faw, R. E. (2011). An MCNP Primer.
U.S. Department of Energy. (2002). A technology roadmap for Generation IV nuclear energy system.
Wu, J., Chen, J., Cai, X., Zou, C., Yu, C., Cui, Y., Zhang, A., & Zhao, H. (2022). A Review of Molten Salt Reactor Multi-Physics Coupling Models and Development Prospects. In Energies (Vol. 15, Issue 21). MDPI. https://doi.org/10.3390/en15218296
Wulandari, R., & Permana, S. (2020). Comparative Studies Of A Safety Analysis For Molten Salt Reactor (MSR). Journal of Physics: Conference Series, 1493(1), 012030. https://doi.org/10.1088/1742-6596/1493/1/012030
Zuhair, Suwoto, Adrial, H., & Setiadipura, T. (2019). Study on MOX Core Characteristics of Experimental Power Reactor using MCNP6 Code. Journal of Physics: Conference Series, 1198(2), 022031. https://doi.org/10.1088/1742-6596/1198/2/022031
Refbacks
- There are currently no refbacks.
Office Address: Faculty of Military Mathematics and Natural Sciences Republic of Indonesia Defense University Indonesian Peace and Security Center Complex, Sentul, Bogor 16810, Indonesia Email: munisi.unhanri@gmail.com | WhatsApp: +6285742313964 |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Munisi: Military Mathematics and Natural Sciences View |