Construction of Airplane Landing Mathematical Models With Drag Chute

Khazali Fahmi(1*), Aura Monalisa Rahman(2), Dinda Rahma Dewi(3),

(1) Department of Physics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor
(2) Department of Physics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor
(3) Department of Physics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor
(*) Corresponding Author

Abstract


In this article, we analyze the dynamics of a airplane landing using a parachute called a drag chute. As long as the aircraft makes a landing until it comes to a complete stop, the airplane experiences two times the air drag, namely the air resistance that appears before the drag chute is used and after it is used. From the calculation, we obtain that the distance is shorter than without using a drag chute.


Keywords


air drag; drag chute; mathematical models

Full Text:

PDF

References


A. Asmianto, H. Hariyanto, and I. Herisman, “Construction of mathematical models the parachute jumper with change position acrobatic,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2018. doi: 10.1088/1742-6596/974/1/012044.

D. A. Laws On, “Freefall Parachute Jumping,” 1999. [Online]. Available: http://teamat.oxfordjournals.org/

R. Phoebus and C. Reilly, “Differential Equations and the Parachute Problem,” 2004.

“PROSIDING SNTTM XX, 13 OKTOBER 2022 Rancang Bangun Parasut Landing Untuk Pesawat Tanpa Awak (UAV) Serindit V-2.”

J. Ferdiyanto, I. M. W. H. Arsanta, and S. Sadimin, “Strategi Pemilihan Pesawat Angkut Militer Produksi PT. Dirgantara Indonesia Untuk Mendukung Industri Pertahanan Dalam Negeri,” Rekayasa, vol. 15, no. 2, pp. 158–163, Aug. 2022, doi: 10.21107/rekayasa.v15i2.14152.

“234144-metoda-short-takeoff-landing-studi-kasus-ede96583”.

“Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, Wade W. Huebsch - Fundamentals of Fluid Mechanics, 6th Edition -Wiley (2009)”.

G. W. Parker, “Projectile motion with air resistance quadratic in the speed,” Am J Phys, vol. 45, no. 7, pp. 606–610, Jul. 1977, doi: 10.1119/1.10812.

J. Lindemuth, “The Effect of Air Resistance on Falling Balls,” Am J Phys, vol. 39, no. 7, pp. 757–759, Jul. 1971, doi: 10.1119/1.1986278.

B. S. Andereck, “Measurement of air resistance on an air track,” Am J Phys, vol. 67, no. 6, pp. 528–533, Jun. 1999, doi: 10.1119/1.19318.

P. Gluck, “Air Resistance on Falling Balls and Balloons,” Phys Teach, vol. 41, no. 3, pp. 178–180, Mar. 2003, doi: 10.1119/1.1557510.

R. Cross and C. Lindsey, “Measuring the Drag Force on a Falling Ball,” Phys Teach, vol. 52, no. 3, pp. 169–170, Mar. 2014, doi: 10.1119/1.4865522.

C. Edi Widodo, “Perhitungan Kecepatan Terminal Obyek Jatuh di Udara,” 2006.

T. Sembiring, P. Pusat, and T. Penerbangan, “Penentuan Gaya Hambat Udara pada Peluncuran ..... (Turah Sembiring) PENENTUAN GAYA HAMBAT UDARA PADA PELUNCURAN ROKET DENGAN SUDUT ELEVASI 65o.”

T. Sembiring, P. Pusat, and T. Penerbangan, “Penentuan Gaya Hambat Udara pada Peluncuran ..... (Turah Sembiring) PENENTUAN GAYA HAMBAT UDARA PADA PELUNCURAN ROKET DENGAN SUDUT ELEVASI 65o.”


Refbacks

  • There are currently no refbacks.



Image
Office Address:
Faculty of Military Mathematics and Natural Sciences
Republic of Indonesia Defense University
Indonesian Peace and Security Center Complex, Sentul, Bogor 16810, Indonesia
Email: munisi.unhanri@gmail.com | WhatsApp: +6285742313964


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Munisi: Military Mathematics and Natural Sciences View