Abdul Basyir, Erna Shevilia Agustian, Adhistia Amelia


Nowadays, tungsten-based material is used for the core of projectile, while ceramic-based is used for the main material of armor. Tungsten-based material is chosen because it has density and hardness superior to steel based-material. Meanwhile, the ceramic-based can enhance mobility and resistance penetration of armor.  Penetration of projectile on target generates an impact velocity parameter. This velocity has resulted when the projectile hits the target. Therefore, the value of impact velocity affects the quantity of depth of penetration (DoP) result. This paper reviews some papers regarding the penetration of tungsten-based projectile on ceramic-based armor. Furthermore, the content of these papers is reviewed by the narrative review method, and the impact velocity and DoP are the main data to analyze. Through this paper, impact velocity has a linear correlation with the DoP, the big of impact velocity produced bigger of DoP, and vice versa. Based on the data in this review, for the same impact velocity, material, and (almost) dimension of a projectile, SiC has better penetration resistance than B4C, TiB2, and Al2O3. Furthermore, the parameter of projectile dimension, projectile material type, target design, and material composition of the target also affects the DoP result.

Full Text:



Abtew, M. A., Boussu, F., Bruniaux, P., Loghin, C., & Cristian, I. (2019). Ballistic impact mechanisms – A review on textiles and fibre-reinforced composites impact responses. Composite Structures, 223 (November 2018), 110966.


Adliana, N., Bura, R. O., & Ruyat, Y. (2019). Analisis pengaruh karakteristik propelan terhadap balistik interior pada munisi kaliber kecil. Teknologi Persenjataan, 1(1), 39–62.

Anderson, C. E., & Royal-Timmons, S. A. (1997). Ballistic performance of confined 99.5%-Al2O3 ceramic tiles. International Journal of Impact Engineering, 19(8), 703–713. https://doi.org/10.1016/s0734-743x(97)00006-7

Arora, A., & Gopal Rao, V. G. (2004). Tungsten heavy alloy for defence applications. Materials Technology, 19(4), 210–216. https://doi.org/10.1080/10667857.2004.11753087

Basyir, A., Bura, R. O., & Lesmana, D. (2019a). Analisis Pengaruh Densitas dari Inti Proyektil Baja dan Tungsten Carbide-CObalt (WC-8Co) terhadap Penetrasi Proyektil pada Target Silicon Carbide (SiC). Teknologi Persenjataan, 1(2), 133–150.

Basyir, A., Bura, R. O., & Lesmana, D. (2019b). Experimental Consideration of Projectile Density and Hardness Effect on Its Penetration Ability in Alumina Target. Journal of Defense Acquisition and Technology, 1(1), 9–15. https://doi.org/10.33530/jdaat.2019.1.1.9

Behner, T., Heine, A., & Wickert, M. (2016). Dwell and penetration of tungsten heavy alloy long-rod penetrators impacting unconfined finite-thickness silicon carbide ceramic targets. International Journal of Impact Engineering, 95, 54–60. https://doi.org/10.1016/j.ijimpeng.2016.04.008

Bhaumik, S. K., Balasubramaniam, R., Upadhyaya, G. S., & Vaidya, M. L. (1992). Oxidation behaviour of hard and binder phase modified WC-10Co cemented carbides. Journal of Materials Science Letters, 11(21), 1457–1459. https://doi.org/10.1007/BF00729663

Bracamonte, L., Loutfy, R., Yilmazcoban, I. K., & Rajan, S. D. (2016). Design, manufacture, and analysis of ceramic-composite armor. In Lightweight Ballistic Composites: Military and Law-Enforcement Applications (pp. 349–367). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100406-7.00012-X

Cao, L. Z., Liu, G. X., Yan, D. M., Duan, G. W., & Chang, Y. W. (2008). Research on fabricating technology of high protection coefficient silicon carbide ceramic armor. Ordnance Material Science Engineering, 5, 43–46.

Carton, E. P., Johnsen, B. B., Rahbek, D. B., Broos, H., & Snippe, A. (2019). Round robin using the depth of penetration test method on an armour grade alumina. Defence Technology, 15(6), 829–836. https://doi.org/10.1016/j.dt.2019.07.014

Chen, L., Yi, D., Wang, B., Liu, H., Wu, C., Huang, X., Li, H., & Gao, Y. (2015). The selective oxidation behaviour of WC-Co cemented carbides during the early oxidation stage. Corrosion Science, 94, 1–5. https://doi.org/10.1016/j.corsci.2015.02.033

Cronin, P., Ryan, F., & Coughlan, M. (2008). Undertaking a literature review: a step-by-step approach. British Journal of Nursing (Mark Allen Publishing), 17(1), 38–43. https://doi.org/10.12968/bjon.2008.17.1.28059

Cui, F., Wu, G., Ma, T., & Li, W. (2017). Effect of ceramic properties and depth-of-penetration test parameters on the ballistic performance of armour ceramics. Defence Science Journal, 67(3), 260–268. https://doi.org/10.14429/dsj.67.10664

Goh, W. L., Zheng, Y., Yuan, J., & Ng, K. W. (2017). Effects of hardness of steel on ceramic armour module against long rod impact. International Journal of Impact Engineering, 109, 419–426. https://doi.org/10.1016/j.ijimpeng.2017.08.004

Green, B. N., Johnson, C. D., & Adams, A. (2006). Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. Journal of Chiropractic Medicine, 5(3), 101–117. https://doi.org/10.1016/S0899-3467(07)60142-6

Grujicic, M., Bell, W. C., & Pandurangan, B. (2012). Design and material selection guidelines and strategies for transparent armor systems. Materials and Design, 34, 808–819. https://doi.org/10.1016/j.matdes.2011.07.007

Hohler, V., Stilp, A. J., & Weber, K. (1995). Hypervelocity penetration of tungsten sinter-alloy rods into aluminum. International Journal of Impact Engineering, 17, 409–418.

Holmquist, T. J., & Johnson, G. R. (2005). Modeling prestressed ceramic and its effect on ballistic performance. International Journal of Impact Engineering, 31(2), 113–127. https://doi.org/10.1016/j.ijimpeng.2003.11.002

Jinzhu, L., Liansheng, Z., & Fenglei, H. (2017). Experiments and simulations of tungsten alloy rods penetrating alumina ceramic/603 armor steel composite targets. International Journal of Impact Engineering, 101, 1–8. https://doi.org/10.1016/j.ijimpeng.2016.09.009

Lee, J., Oh, I., Jang, J., Hong, S., & Park, H. (2019). Mechanical properties and microstructural evolution of WC binderless and WC-Co hard materials by the heat treatment process. Journal of Alloys and Compounds, 786, 1–10.

Levy, Y., & Ellis, T. J. (2006). A systems approach to conduct an effective literature review in support of information systems research. Informing Science, 9(May 2014), 181–211. https://doi.org/10.28945/479

Liu, K., Wang, Z., Yin, Z., Cao, L., & Yuan, J. (2018). Effect of Co content on microstructure and mechanical properties of ultrafine grained WC-Co cemented carbide sintered by spark plasma sintering. Ceramics International, 44(15), 18711–18718. https://doi.org/10.1016/j.ceramint.2018.07.100

Liu, W., Chen, Z., Cheng, X., Wang, Y., Amankwa, A. R., & Xu, J. (2016). Design and ballistic penetration of the ceramic composite armor. Composites Part B: Engineering, 84, 33–40. https://doi.org/10.1016/j.compositesb.2015.08.071

Lundberg, P., & Lundberg, B. (2005). Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials. International Journal of Impact Engineering, 31(7), 781–792. https://doi.org/10.1016/j.ijimpeng.2004.06.003

Lundberg, P., Renström, R., & Lundberg, B. (2000). Impact of metallic projectiles on ceramic targets: Transition between interface defeat and penetration. International Journal of Impact Engineering, 24(3), 259–275. https://doi.org/10.1016/S0734-743X(99)00152-9

Luo, D., Wang, Y., Wang, F., Cheng, H., Zhang, B., & Zhu, Y. (2020). The influence of metal cover plates on ballistic performance of silicon carbide subjected to large-scale tungsten projectile. Materials and Design, 191, 108659. https://doi.org/10.1016/j.matdes.2020.108659

Moynihan, T. J., Chou, S.-C., & Mihalcin, A. L. (2000). Application of the Depth-of-Penetration Test Methodology to Characterize Ceramics for Personnel Protection.

National Institute of Justice. (2014). Selection and Application Guide to Ballistic-Resistant Body Armor.

National Research Council. (2012). Testing of Body Armor Materials: Phase III. In Testing of Body Armor Materials: Phase III. The National Academic Press. https://doi.org/10.17226/13390

Ning, J., Ren, H., Guo, T., & Li, P. (2013). Dynamic response of alumina ceramics impacted by long tungsten projectile. International Journal of Impact Engineering, 62, 60–74. https://doi.org/10.1016/j.ijimpeng.2013.06.006

Orphal, D. L., & Franzen, R. R. (1997). Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s. International Journal of Impact Engineering, 19(1), 1–13. https://doi.org/10.1016/0734-743x(95)00064-h

Pare, G., & Kitsiou, S. (2016). Methods for Literature Reviews. In Handbook of eHealth Evaluation: An Evidence-based Approach (pp. 157–180). University of Victoria.

Reaugh, J. E., Holt, A. C., Wilkins, M. L., Cunningham, B. J., Hord, B. L., & Kusubov, A. S. (1999). Impact studies of five ceramic materials and pyrex. International Journal of Impact Engineering, 23(1 PART II), 771–782. https://doi.org/10.1016/s0734-743x(99)00121-9

Robertson, C., & Hazell, P. J. (2003). Resistance of different ceramic materials to penetration by a tungsten carbide cored projectile. In Ceramic Armor and Armor Systems (pp. 153–163). The American Ceramic Society. https://doi.org/10.1002/9781118406793

Rosenberg, Z., Dekel, E., Hohler, V., Stilp, A. J., & Weber, K. (1997). Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations. Shock Compression of Condensed Matter, 917–920. https://doi.org/10.1063/1.55612

Rozenberg, Z., & Yeshurun, Y. (1988). The relation between ballastic efficiency and compressive strength of ceramic tiles. International Journal of Impact Engineering, 7(3), 357–362. https://doi.org/10.1016/0734-743X(88)90035-8

Ruys, A. (2019). Alumina in lightweight body armor. In Alumina Ceramics (pp. 321–368). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102442-3.00011-7

Saeedi Heydari, M., Ghezavati, J., Abbasgholipour, M., & Mohammadi Alasti, B. (2017). Various types of ceramics used in radome: A review. Scientia Iranica, 24(3), 1136–1147. https://doi.org/10.24200/sci.2017.4095

Sylvester, A., Tate, M., & Johnstone, D. (2013). Beyond synthesis: Re-presenting heterogeneous research literature. Behaviour and Information Technology, 32(12), 1199–1215. https://doi.org/10.1080/0144929X.2011.624633

Tan, Z. H., Han, X., Zhang, W., & Luo, S. H. (2010). An investigation on failure mechanisms of ceramic/metal armour subjected to the impact of tungsten projectile. International Journal of Impact Engineering, 37(12), 1162–1169. https://doi.org/10.1016/j.ijimpeng.2010.07.004

Westerling, L., Lundberg, P., & Lundberg, B. (2001). Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities. International Journal of Impact Engineering, 25(7), 703–714. https://doi.org/10.1016/S0734-743X(00)00072-5

Woodward, R. L., Gooch, W. A., O'Donnell, R. G., Perciballi, W. J., Baxter, B. J., & Pattie, S. D. (1994). A study of fragmentation in the ballistic impact of ceramics. International Journal of Impact Engineering, 15(5), 605–618. https://doi.org/10.1016/0734-743X(94)90122-2

Yulong, H., & Fan, J. (1996). Development and current status of armor ceramics. Ordnance Materials Science and Engineering, 5, 37–42.

DOI: http://dx.doi.org/10.33172/jp.v6i3.890

Article Metrics

Abstract view : 0 times
PDF - 0 times

Lisensi Creative Commons
Jurnal Pertahanan is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.