Maspin Apit(1*), Romie Oktovianus Bura(2), Wisnu Ari Adi(3), Raden Andhika Ajiesastra(4),

(1) Faculty of Defense Technology, Indonesia Defense University
(2) Faculty of Defense Technology, Indonesia Defense University
(3) Science And Technology Of Advanced Materials, National Nuclear Energy Agency Of Indonesia
(4) Research & Development Agency, Ministry of Defense
(*) Corresponding Author


To avoid detection from Radio Detection and Ranging (Radar), one of the efforts is to use Radar absorbing material. One of the Radar wave absorbing materials is Perovskite CoTiO3. This Paper investigated the ability of CoTi(1-x)Mn(x)O3 to absorb the Radar wave. CoTi(1-x)Mn(x)O3 with variations x = 0, 0.01, 0.02, and 0.03 have been successfully synthesized using the mechanical milling method. The XRD pattern shows that the sample formed was single phase CoTiO3. Surface morphology resulting from measurements with SEM shows homogeneous particles and an average size of 200 nm. The results of measurements with VNA at X-band frequency (8.20 GHz - 12.4 GHz) show that the absorption ability of electromagnetic waves from CoTiO3 increases with the increase in doping from Mn4+. Maximum results obtained at the composition x=0.03 (CoTi0.97Mn0.03O3) with a reflection loss (RL) value is -14.56 dB (%Abs is 81.3%) at a frequency of 9.96 GHz. This result proves that CoTi(1-x)Mn(x)O3 can be used as a Radar absorbing material at X-band frequency.

Full Text:



Adi, W. A., Yunasfi, Y., Mashadi, M., Winatapura, D. S., Mulyawan, A., Sarwanto, Y., … Taryana, Y. (2019). Metamaterial: Smart Magnetic Material for Microwave Absorbing Material. In K. H. Yeap & K. Hirasawa (Eds.), Electromagnetic Fields and Waves (pp. 1–18). IntechOpen.

Akmal Johan, Wisnu Ari Adi, F. S. A. and D. S. (2019). Analysis crystal structure of magnetic materials Co1-xZnxFe2O4. Journal of Physics: Conf. Series.

C. G. Sun, H. J. L. Li Taoa, C. J. Huang, H. S. Z. and Z. S. C. (2006). Preparation and characterization of hexagonal mesoporous titanium–cobalt oxides. Materials Letters, 60(17–18), 2115–2118.

Chu, X., Liu, X., Wang, G., & Meng, G. (1999). Preparation and gas-sensing properties of nano-CoTiO3. Materials Research Bulletin.

Emery, W & Camps, A. (2017). Introduction to Satellite Remote Sensing. Amsterdam: Elsevier.

Folgueras, L. de C., Alves, M. A., & Rezende, M. C. (2010). Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: Measurement and simulation of their properties. Journal of Aerospace Technology and Management.

Gunanto, Y. E., Jobiliong, E., & Adi, W. A. (2016). Microwave absorbing properties of Ba0.6Sr0.4Fe12-zMnzO19(z = 0-3) materials in XBand frequencies. Journal of Mathematical and Fundamental Sciences.

He., H. Y. (2007). Humidity sensitivity of CoTiO3 thin film prepared by sol–gel method. Materials Technology, 22(2), 95–97.

Keerthana, K., Shanmugha Sundaram, G. A., & Soman, K. P. (2018). Effect of jammer signal on stepped frequency PAM4 radar waveforms. In Procedia Computer Science.

Khalil, A., & Celik, K. (2019). Optimizing reactivity of light-burned magnesia through mechanical milling. Ceramics International.

Kumar, S., Supriya, S., Pradhan, L. K., & Kar, M. (2017). Effect of microstructure on electrical properties of Li and Cr substituted nickel oxide. Journal of Materials Science: Materials in Electronics.

Lee, D., Choi, I., & Lee, D. G. (2015). Development of a damage tolerant structure for nano-composite radar absorbing structures. Composite Structures.

Lenin, N., Sakthipandi, K., Kanna, R. R., & Rajesh, J. (2018). Effect of neodymium ion on the structural, electrical and magnetic properties of nanocrystalline nickel ferrites. Ceramics International.

Li, M. W., Gao, X. M., Hou, Y. L., & Wang, C. Y. (2013). Characterization of CoTiO3 nanocrystallites prepared by homogeneous precipitation method. Journal of Nano- and Electronic Physics.

Li, W., Lina, L., Lia, C., Wang, Y., & Zhang, J. (2019). Radar absorbing combinatorial metamaterial based on silicon carbide/ carbon foam material embedded with split square ring metal. Results in Physics, 12, 278–286.

Li, X. M., Luo, D., Qiu, C. Y., & Li, C. (2011). Adaptive generalized DPCA algorithm for clutter suppression in airborne radar system. In Proceedings of 2011 IEEE CIE International Conference on Radar, RADAR 2011.

Liu, J. R., Itoh, M., Horikawa, T., Itakura, M., Kuwano, N., & Machida, K. I. (2004). Complex permittivity, permeability and electromagnetic wave absorption of α-Fe/C(amorphous) and Fe2B/C(amorphous) nanocomposites. Journal of Physics D: Applied Physics.

Panwar, R., Agarwala, V., & Singh, D. (2015). A cost effective solution for development of broadband radar absorbing material using electronic waste. Ceramics International.

Phan, T. L., Zhang, P., Grinting, D., Yu, S. C., Nghia, N. X., Dang, N. V., & Lam, V. D. (2012). Influences of annealing temperature on structural characterization and magnetic properties of Mn-doped BaTiO 3 ceramics. Journal of Applied Physics.

R. E. Newnham, J. H. F. and R. P. S. (1964). Crystal structure and magnetic properties of CoTiO3. Acta Crystallographica, 17(3), 240–242.

Sarkar, B., Pendem, C., Konathala, L. N. S., Sasaki, T., & Bal, R. (2014). Formation of ilmenite-type CoTiO3 on TiO2 and its performance in oxidative dehydrogenation of cyclohexane with molecular oxygen. Catalysis Communications.

Schoofs, F., Egilmez, M., Fix, T., MacManus-Driscoll, J. L., & Blamire, M. G. (2013). Structural and magnetic properties of CoTiO3 thin films on SrTiO3 (001). Journal of Magnetism and Magnetic Materials.

Shiva, A. V. N. R. S., Elleithy, K., & Abdelfattah, E. (2017). Improved monostatic pulse radar design using ultra wide band for range estimation. In 2016 Annual Connecticut Conference on Industrial Electronics, Technology and Automation, CT-IETA 2016.

Siemons, M., & Simon, U. (2007). Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method. Sensors and Actuators, B: Chemical.

Silva, R. A., Oliveira, R. G. M., Silva, M. A. S., & Sombra, A. S. B. (2019). Effect of V2O5 addition on the structural and electrical properties of CoTio3. Composites Part B: Engineering.

Vinogradov, A. V., Vinogradov, V. V., Gerasimova, T. V., & Agafonov, A. V. (2012). Low-temperature sol-gel synthesis of crystalline CoTiO3 coatings without annealing. Journal of Alloys and Compounds.

Wang, S. Q., Hu, G. P., Zhang, Q. L., Gao, C. Y., & Cai, T. (2018). The Background and Significance of Radar Signal Sorting Research in Modern Warfare. In Procedia Computer Science.

Wu, C., Chen, S., Gu, X., Hu, R., Zhong, S., Tan, G., … Li, R. W. (2018). Enhanced and broadband absorber with surface pattern design for X-Band. Current Applied Physics.

Yadav, B. C., Yadav, R. C., Singh, S., Dwivedi, P. K., Ryu, H., & Kang, S. (2013). Nanostructured cobalt oxide and cobalt titanate thin films as optical humidity sensor: A new approach. Optics and Laser Technology.

Yang, G., Yan, W., Wang, J., & Yang, H. (2014). Fabrication and characterization of CoTiO3 nanofibers by sol-gel assisted electrospinning. Materials Letters.

Zou, J., & Zheng, W. (2016). TiO2@CoTiO3 complex green pigments with low cobalt content and tunable color properties. Ceramics International.

Zwinkels, J. (2015). Light, Electromagnetic Spectrum. In L. R (Ed.), Encyclopedia of Color Science and Technology (pp. 1–8). Berlin, Heidelberg: Springer.



Journal Terindex di Garuda


Lisensi Creative Commons
Jurnal Pertahanan is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.