SYNTHESIS AND CHARACTERIZATION OF CoTi(1-X)Mn(X)O3 AS A RADAR ABSORBING MATERIAL

Maspin Apit, Romie Oktovianus Bura, Wisnu Ari Adi, Raden Andhika Ajiesastra

Abstract


To avoid detection from Radio Detection and Ranging (Radar), one of the efforts is to use Radar absorbing material. One of the Radar wave absorbing materials is Perovskite CoTiO3. This Paper investigated the ability of CoTi(1-x)Mn(x)O3 to absorb the Radar wave. CoTi(1-x)Mn(x)O3 with variations x = 0, 0.01, 0.02, and 0.03 have been successfully synthesized using the mechanical milling method. The XRD pattern shows that the sample formed was single phase CoTiO3. Surface morphology resulting from measurements with SEM shows homogeneous particles and an average size of 200 nm. The results of measurements with VNA at X-band frequency (8.20 GHz - 12.4 GHz) show that the absorption ability of electromagnetic waves from CoTiO3 increases with the increase in doping from Mn4+. Maximum results obtained at the composition x=0.03 (CoTi0.97Mn0.03O3) with a reflection loss (RL) value is -14.56 dB (%Abs is 81.3%) at a frequency of 9.96 GHz. This result proves that CoTi(1-x)Mn(x)O3 can be used as a Radar absorbing material at X-band frequency.


Full Text:

PDF

References


Adi, W. A., Yunasfi, Y., Mashadi, M., Winatapura, D. S., Mulyawan, A., Sarwanto, Y., … Taryana, Y. (2019). Metamaterial: Smart Magnetic Material for Microwave Absorbing Material. In K. H. Yeap & K. Hirasawa (Eds.), Electromagnetic Fields and Waves (pp. 1–18). IntechOpen. https://doi.org/10.5772/intechopen.84471

Akmal Johan, Wisnu Ari Adi, F. S. A. and D. S. (2019). Analysis crystal structure of magnetic materials Co1-xZnxFe2O4. Journal of Physics: Conf. Series.

C. G. Sun, H. J. L. Li Taoa, C. J. Huang, H. S. Z. and Z. S. C. (2006). Preparation and characterization of hexagonal mesoporous titanium–cobalt oxides. Materials Letters, 60(17–18), 2115–2118.

Chu, X., Liu, X., Wang, G., & Meng, G. (1999). Preparation and gas-sensing properties of nano-CoTiO3. Materials Research Bulletin. https://doi.org/10.1016/S0025-5408(99)00167-1

Emery, W & Camps, A. (2017). Introduction to Satellite Remote Sensing. Amsterdam: Elsevier.

Folgueras, L. de C., Alves, M. A., & Rezende, M. C. (2010). Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: Measurement and simulation of their properties. Journal of Aerospace Technology and Management. https://doi.org/10.5028/jatm.2010.02016370

Gunanto, Y. E., Jobiliong, E., & Adi, W. A. (2016). Microwave absorbing properties of Ba0.6Sr0.4Fe12-zMnzO19(z = 0-3) materials in XBand frequencies. Journal of Mathematical and Fundamental Sciences. https://doi.org/10.5614/j.math.fund.sci.2016.48.1.6

He., H. Y. (2007). Humidity sensitivity of CoTiO3 thin film prepared by sol–gel method. Materials Technology, 22(2), 95–97.

Keerthana, K., Shanmugha Sundaram, G. A., & Soman, K. P. (2018). Effect of jammer signal on stepped frequency PAM4 radar waveforms. In Procedia Computer Science. https://doi.org/10.1016/j.procs.2018.10.347

Khalil, A., & Celik, K. (2019). Optimizing reactivity of light-burned magnesia through mechanical milling. Ceramics International. https://doi.org/10.1016/j.ceramint.2019.07.324

Kumar, S., Supriya, S., Pradhan, L. K., & Kar, M. (2017). Effect of microstructure on electrical properties of Li and Cr substituted nickel oxide. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-017-7580-4

Lee, D., Choi, I., & Lee, D. G. (2015). Development of a damage tolerant structure for nano-composite radar absorbing structures. Composite Structures. https://doi.org/10.1016/j.compstruct.2014.08.001

Lenin, N., Sakthipandi, K., Kanna, R. R., & Rajesh, J. (2018). Effect of neodymium ion on the structural, electrical and magnetic properties of nanocrystalline nickel ferrites. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.03.218

Li, M. W., Gao, X. M., Hou, Y. L., & Wang, C. Y. (2013). Characterization of CoTiO3 nanocrystallites prepared by homogeneous precipitation method. Journal of Nano- and Electronic Physics.

Li, W., Lina, L., Lia, C., Wang, Y., & Zhang, J. (2019). Radar absorbing combinatorial metamaterial based on silicon carbide/ carbon foam material embedded with split square ring metal. Results in Physics, 12, 278–286.

Li, X. M., Luo, D., Qiu, C. Y., & Li, C. (2011). Adaptive generalized DPCA algorithm for clutter suppression in airborne radar system. In Proceedings of 2011 IEEE CIE International Conference on Radar, RADAR 2011. https://doi.org/10.1109/CIE-Radar.2011.6159743

Liu, J. R., Itoh, M., Horikawa, T., Itakura, M., Kuwano, N., & Machida, K. I. (2004). Complex permittivity, permeability and electromagnetic wave absorption of α-Fe/C(amorphous) and Fe2B/C(amorphous) nanocomposites. Journal of Physics D: Applied Physics. https://doi.org/10.1088/0022-3727/37/19/019

Panwar, R., Agarwala, V., & Singh, D. (2015). A cost effective solution for development of broadband radar absorbing material using electronic waste. Ceramics International. https://doi.org/10.1016/j.ceramint.2014.10.118

Phan, T. L., Zhang, P., Grinting, D., Yu, S. C., Nghia, N. X., Dang, N. V., & Lam, V. D. (2012). Influences of annealing temperature on structural characterization and magnetic properties of Mn-doped BaTiO 3 ceramics. Journal of Applied Physics. https://doi.org/10.1063/1.4733691

R. E. Newnham, J. H. F. and R. P. S. (1964). Crystal structure and magnetic properties of CoTiO3. Acta Crystallographica, 17(3), 240–242.

Sarkar, B., Pendem, C., Konathala, L. N. S., Sasaki, T., & Bal, R. (2014). Formation of ilmenite-type CoTiO3 on TiO2 and its performance in oxidative dehydrogenation of cyclohexane with molecular oxygen. Catalysis Communications. https://doi.org/10.1016/j.catcom.2014.06.021

Schoofs, F., Egilmez, M., Fix, T., MacManus-Driscoll, J. L., & Blamire, M. G. (2013). Structural and magnetic properties of CoTiO3 thin films on SrTiO3 (001). Journal of Magnetism and Magnetic Materials. https://doi.org/10.1016/j.jmmm.2012.12.017

Shiva, A. V. N. R. S., Elleithy, K., & Abdelfattah, E. (2017). Improved monostatic pulse radar design using ultra wide band for range estimation. In 2016 Annual Connecticut Conference on Industrial Electronics, Technology and Automation, CT-IETA 2016. https://doi.org/10.1109/CT-IETA.2016.7868245

Siemons, M., & Simon, U. (2007). Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method. Sensors and Actuators, B: Chemical. https://doi.org/10.1016/j.snb.2007.04.009

Silva, R. A., Oliveira, R. G. M., Silva, M. A. S., & Sombra, A. S. B. (2019). Effect of V2O5 addition on the structural and electrical properties of CoTio3. Composites Part B: Engineering. https://doi.org/10.1016/j.compositesb.2019.107286

Vinogradov, A. V., Vinogradov, V. V., Gerasimova, T. V., & Agafonov, A. V. (2012). Low-temperature sol-gel synthesis of crystalline CoTiO3 coatings without annealing. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2012.06.102

Wang, S. Q., Hu, G. P., Zhang, Q. L., Gao, C. Y., & Cai, T. (2018). The Background and Significance of Radar Signal Sorting Research in Modern Warfare. In Procedia Computer Science. https://doi.org/10.1016/j.procs.2019.06.080

Wu, C., Chen, S., Gu, X., Hu, R., Zhong, S., Tan, G., … Li, R. W. (2018). Enhanced and broadband absorber with surface pattern design for X-Band. Current Applied Physics. https://doi.org/10.1016/j.cap.2017.10.012

Yadav, B. C., Yadav, R. C., Singh, S., Dwivedi, P. K., Ryu, H., & Kang, S. (2013). Nanostructured cobalt oxide and cobalt titanate thin films as optical humidity sensor: A new approach. Optics and Laser Technology. https://doi.org/10.1016/j.optlastec.2012.12.011

Yang, G., Yan, W., Wang, J., & Yang, H. (2014). Fabrication and characterization of CoTiO3 nanofibers by sol-gel assisted electrospinning. Materials Letters. https://doi.org/10.1016/j.matlet.2014.01.177

Zou, J., & Zheng, W. (2016). TiO2@CoTiO3 complex green pigments with low cobalt content and tunable color properties. Ceramics International. https://doi.org/10.1016/j.ceramint.2016.02.029

Zwinkels, J. (2015). Light, Electromagnetic Spectrum. In L. R (Ed.), Encyclopedia of Color Science and Technology (pp. 1–8). Berlin, Heidelberg: Springer. https://doi.org/https://doi.org/10.1007/978-3-642-27851-8_204-1




DOI: http://dx.doi.org/10.33172/jp.v6i1.697

Article Metrics

Abstract view : 0 times
PDF - 0 times

Lisensi Creative Commons
Jurnal Pertahanan is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.