APPLICATION OF NEUROIMAGING TECHNOLOGY IN MILITARY

Rizki Edmi Edison

Abstract


Understanding the function of the human brain at the level of cognition is a common goal of neuroscience. Neuroscience as one of the fastest-growing areas of multidiscipline that understand the biological basis for behavior through scientific research could be used in many areas, such as management, marketing, leadership, education, and military. For revealing the human mind especially soldiers as the most important part of the military, the implementation of technology to measure the brain of humans must be considered. Through this manuscript, potential uses of neuroimaging technology in the military were analyzed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) recommendation was conducted to provide a comprehensive review of the application of neuroimaging technologies. For practical purposes, technology with advantages such as non-invasive, real-time, and mobile should be chosen. Through this study, electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and brain ECVT (Electrical Capacitance Volume Tomography) have potential use to measure the cognitive functions of soldiers in the military. Neuroimaging technologies have potential use in the military field, especially in the level of behavioral neuroscience. By understanding how a soldier’s brain reacts to any circumstances especially those that mimic the combat situation, it has a beneficial effect on military strategy.


Full Text:

PDF

References


Bassett, D. S., & Gazzaniga, M. S. (2015). Understanding Complexity in the Human Brain. Trends in Cognitive Sciences, 15(5), 200–209. https://doi.org/https://doi.org/10.1016/j.tics.2011.03.006

Biasiucci, A., Franceschiello, B., & Murray, M. M. (2019). Electroencephalography. Current Biology, 29(3), R80–R85. https://doi.org/https://doi.org/10.1016/j.cub.2018.11.052

Buck, A. K., Nekolla, S., Ziegler, S., Beer, A., Krause, B. J., Herrmann, K., … Drzezga, A. (2008). SPECT/CT. Journal of Nuclear Medicine, 49(8), 1305–1319. https://doi.org/https://doi.org/10.2967/jnumed.107.050195

Burns, S. M., Barnes, L. N., McCulloh, I. A., Dagher, M. M., Falk, E. B., Storey, J. D., & Lieberman, M. D. (2019). Making Social Neuroscience Less WEIRD: Using fNIRS to Measure Neural Signatures of Persuasive Influence in a Middle East Participant Sample. J Pers Soc Psychol, 116(3), e1–e11. https://doi.org/https://doi.org/10.1037/pspa0000144

Casadevall, A., & Fang, F. C. (2020). Reproducible Science. Infection and Immunity, 78(12), 4972–4975. https://doi.org/https://doi.org/10.1128/IAI.00908-10

Diaz-Piedra, C., Sebastián, M. V., & Stasi, L. L. Di. (2020). EEG Theta Power Activity Reflects Workload among Army Combat Drivers: An Experimental Study. Brain Sciences, 10(4), 1–14. https://doi.org/https://doi.org/10.3390/brainsci10040199

Dutcher, J. M., & Creswell, J. D. (2018). Behavioral Interventions in Health Neuroscience. Annals of the New York Academy of Sciences, 1428(1), 51–70. https://doi.org/https://doi.org/10.1111/nyas.13913

Edison, R. E., Juhro, S. M., Aulia, A. F., & Widiasih, P. A. (2019). Transformational Leadership and Neurofeedback: The Medical Perspective of Neuroleadership. International Journal of Organizational Leadership, 8(1), 46–62. https://doi.org/http://dx.doi.org/10.33844/ijol.2019.60317

Edmi, E. R., Fathul, I. M., Rohmadi, R., Harke, P. S., & Purwo, T. W. (2021). An Integrated Brain ECVT and EEG System for Epilepsy Imaging. Res. J. Biotech, 16(7), 58–63. https://doi.org/https://doi.org/10.25303/167rjbt5821

Endres, D., Perlov, E., Maier, S., Feige, B., Nickel, K., Goll, P., … Elst, L. T. van. (2015). Normal Neurochemistry in the Prefrontal and Cerebellar Brain of Adults with Attention-Deficit Hyperactivity Disorder. Frontiers in Behavioral Neuroscience, 9, 1–13. https://doi.org/https://doi.org/10.3389/fnbeh.2015.00242

Falk, E. B., Hyde, L. W., Mitchell, C., Faul, J., Gonzalez, R., Heitzeg, M. M., … Schulenberg, J. (2013). What is a Representative Brain? Neuroscience Meets Population Science. In M. C. Waters (Ed.), Proceedings of the National Academy of Sciences of the United States of America Vol. 10 (pp. 17615–17622). https://doi.org/https://doi.org/10.1073/pnas.1310134110

Ferrari, M., & Quaresima, V. (2012). A Brief Review on the History of Human Functional Near-Infrared Spectroscopy (fNIRS) Development and Fields of Application. Neuroimage, 63(2), 921–935. https://doi.org/https://doi.org/10.1016/j.neuroimage.2012.03.049

Fisher, C. E., Chin, Lisa EdD, JD, MA, M., & Klitzman, R. M. (2010). Defining Neuromarketing: Practices and Professional Challenges. Harvard Review of Psychiatry, 18(4), 230–237. https://doi.org/10.3109/10673229.2010.496623

Furness, J. B. (2006). The Organisation of the Autonomic Nervous System: Peripheral Connections. Autonomic Neuroscience: Basic and Clinical, 130(1–2), 1–5. https://doi.org/https://doi.org/10.1016/j.autneu.2006.05.003

Fuster, J., Guiou, M., Ardestani, A., Cannestra, A., Sheth, S., Zhou, Y.-D., … Bodner, M. (2005). Near-Infrared Spectroscopy (NIRS) in Cognitive Neuroscience of the Primate Brain. NeuroImage, 2006(1), 215–220. https://doi.org/https://doi.org/10.1016/j.neuroimage.2005.01.055

Gabrieli, J. D. E. (2016). The promise of Educational Neuroscience: Comment on Bowers (2016). Psychological Review, 123(5), 613–619. https://doi.org/https://doi.apa.org/doi/10.1037/rev0000034

Gjerstad, L., Gilhus, N. E., & Storstein, A. (2008). A Retrospective View on Research in Neuroscience in Norway. Acta Neurol Scand Suppl, 188, 3–5. https://doi.org/https://doi.org/10.1111/j.1600-0404.2008.01024.x

Glover, G. H. (2011). Overview of Functional Magnetic Resonance Imaging. Neurosurgery Clinics of North America, 22(2), 133–139. https://doi.org/https://doi.org/10.1016/j.nec.2010.11.001

Grillner, S., Kozlov, A., & Kotaleski, J. H. (2005). Integrative Neuroscience: Linking Levels of Analyses. Current Opinion in Neurobiology, 15(5), 614–621. https://doi.org/https://doi.org/10.1016/j.conb.2005.08.017

He, B., & Lian, J. (2002). High-Resolution Spatio-Temporal Functional Neuroimaging of Brain Activity. Critical ReviewsTM in Biomedical Engineering, 30(4–6), 283–306. https://doi.org/10.1615/CritRevBiomedEng.v30.i456.30

Heinze, R. A., Vanzella, P., Morais, G. A. Z., & Sato, J. R. (2019). Hand Motor Learning in a Musical Context and Prefrontal Cortex Hemodynamic Response: a Functional Near-Infrared Spectroscopy (fNIRS) Study. Cognitive Processing, 20(4), 507–513. https://doi.org/https://doi.org/10.1007/s10339-019-00925-y

Idiazabal-Alecha, M. A., Sebastian-Guerrero, M. V, Navascues-Sanagustin, M. A., Arcos-Sanchez, C., Arana-Aritmendiz, M. V, Ruiz-Lopez, C., & Iso-Perez, J. M. (2018). A Cortical Study of the Attention in Military Simulation Tests. Rev Neurol, 66(10), 331–339.

Ihsan, M. F., Edison, R. E., Pratama, S. H., Rohmadi, A. S., & Taruno, W. P. (2020). Real-time Measurement of Integrated Multichannel EEG-ECVT in Pre-Frontal Lobe. European Journal of Molecular & Clinical Medicine, 7(10), 1343–1350. Retrieved from https://ejmcm.com/article_6673.html

Ioannides, A. A. (2009). Magnetoencephalography (MEG). In F. Hyder (Ed.), Dynamic Brain Imaging, Multi-Modal Methods and In Vivo Applications (pp. 167–188). Humana Press. https://doi.org/https://doi.org/10.1007/978-1-59745-543-5_8

Kapoor, V., McCook, B. M., & Torok, F. S. (2004). An Introduction to PET-CT Imaging. RadioGraphics, 24(2), 523–543. https://doi.org/https://doi.org/10.1148/rg.242025724

Keatley, D., Clarke, D. D., & Hagger, M. S. (2013). The Predictive Validity of Implicit Measures of Self-Determined Motivation Across Health-Related Behaviours. British Journal of Health Psychology, 18(1), 2–17. https://doi.org/https://doi.org/10.1111/j.2044-8287.2011.02063.x

Lee Morris III, G., Galezowska, J., Leroya, R., & North, R. (1994). The Results of Computer-Assisted Ambulatory 16-Channel EEG. Electroencephalography and Clinical Neurophysiology, 91(3), 229–231. https://doi.org/https://doi.org/10.1016/0013-4694(94)90073-6

Liberati, A., Altman, D. G., Tetzlaff, J., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies that Evaluate Health Care Interventions: Explanation and Elaboration. Journal of Clinical Epidemiology, 62(10), e1–e34. https://doi.org/https://doi.org/10.1016/j.jclinepi.2009.06.006

Maharani, R., Edison, R. E., Ihsan, M. F., & Taruno, W. P. (2020). Average Subtraction Method for Image Reconstruction of Brain using ECVT for Tumor Detection. International Journal of Technology (IJTech), 11(5), 995–1004. https://doi.org/https://doi.org/10.14716/ijtech.v11i5.4325

Malish, R. G. (2017). The Importance of the Study of Cognitive Performance Enhancement for U.S. National Security. Aerospace Medicine and Human Performance, 88(8), 773-778(6). https://doi.org/https://doi.org/10.3357/AMHP.4795.2017

Nirmala, S. A., Edison, R. E., Nurfauzi, R., Haryanthi, L. P. S., Ihsan, M. F., Maharani, R., & Taruno, W. P. (2015). Voltage Value of 2-Electrode 4D Brain ECVT of Human Brain During Stress and Relaxed Conditions. Advanced Science, Engineering and Medicine, 7(10), 869-871(3). https://doi.org/https://doi.org/10.1166/asem.2015.1782

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. (2018). The Present and Future Use of Functional Near-Infrared Spectroscopy (fNIRS) for Cognitive Neuroscience. Annals of the New York Academy of Sciences. https://doi.org/https://doi.org/10.1111/nyas.13948

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. (2020). The Present and Future Use of Functional Near-Infrared Spectroscopy (fNIRS) for Cognitive Neuroscience. Ann N Y Acad Sci, 1464(1), 5–29. https://doi.org/https://doi.org/10.1111/nyas.13948

Pipera, S. K., Krueger, A., P.Kocha, S., Mehnert, J., Habermehl, C., Steinbrink, J., … Schmitz, C. H. (2014). A Wearable Multi-Channel fNIRS System for Brain Imaging in Freely Moving Subjects. NeuroImage, 85(1), 64–71. https://doi.org/https://doi.org/10.1016/j.neuroimage.2013.06.062

Raboel, P. H., Bartek, J., Andresen, M., Bellander, B. M., & Romner, B. (2012). Intracranial Pressure Monitoring: Invasive versus Non-Invasive Methods—A Review. Critical Care Research and Practice, 2012. https://doi.org/https://doi.org/10.1155/2012/950393

Reif, P. S., Strzelczyk, A., & Rosenow, F. (2016). The History of Invasive EEG Evaluation in Epilepsy Patients. Seizure, 41, 191–195. https://doi.org/https://doi.org/10.1016/j.seizure.2016.04.006

Rizki, E. E., Uga, M., Dan, I., Dan, H., Tsuzuki, D., Yokota, H., … Watanabe, E. (2015). Determination of Epileptic Focus Side in Mesial Temporal Lobe Epilepsy Using Long-Term Noninvasive fNIRS/EEG Monitoring for Presurgical Evaluation. Neurophotonics, 2(2). https://doi.org/https://doi.org/10.1117/1.nph.2.2.025003

Rodesch, G., Picard, L., Berenstein, A., Biondi, A., Bracard, S., Choi, I. S., … Berg, R. van den. (2013). Editorial: Interventional Neuroradiology: a Neuroscience sub-specialty? Interv Neuroradiol, 19(4), 521–523. https://doi.org/https://doi.org/10.1177/159101991301900420

Rothwell, J. (2009). Chapter 4 Meet the Brain: Neurophysiology. International Review of Neurobiology, 86, 51–65. https://doi.org/https://doi.org/10.1016/S0074-7742(09)86004-2

Sandi, C. (2008). Understanding the Neurobiological Basis of Behavior: A Good Way to Go. Frontiers in Neuroscience, 2, 129–130. https://doi.org/https://doi.org/10.3389/neuro.01.046.2008

Shoja, M. M., & Tubbs, R. S. (20007). Augusta Déjerine-Klumpke: The First Female Neuroanatomist. Clinical Anatomy, 20(6), 585–587. https://doi.org/https://doi.org/10.1002/ca.20474

Simons, M., & Winckler, B. (2016). Editorial Overview: Cellular Neuroscience. Current Opinion in Neurobiology, 39, v–vii. https://doi.org/https://doi.org/10.1016/j.conb.2016.07.014

Sklerov, M., Dayan, E., & Browner, N. (2019). Functional Neuroimaging of the Central Autonomic Network: Recent Developments and Clinical Implications. Clinical Autonomic Research, 29(6), 555–566. https://doi.org/https://doi.org/10.1007/s10286-018-0577-0

Sturm, W. (2007). Neuropsychological Assessment. Journal of Neurology, 254, II12–II14. https://doi.org/https://doi.org/10.1007/s00415-007-2004-7

Südhof, T. C. (2017). Molecular Neuroscience in the 21st Century: A Personal Perspective. Neuron, 96(3), 536–541. https://doi.org/https://doi.org/10.1016/j.neuron.2017.10.005

Taruno, W. P., Baidillah, M. R., Sulaiman, R. I., Ihsan, M. F., Fatmi, S. E., Muhtadi, A. H., … Aljohani, M. (2013). 4D Brain Activity Scanner Using Electrical Capacitance Volume Tomography (ECVT). 2013 IEEE 10th International Symposium on Biomedical Imaging, 1006–1009. IEEE. https://doi.org/10.1109/ISBI.2013.6556647

Tavakoli, S., Peitz, G., Ares, W., Hafeez, S., & Grandhi, R. (2017). Complications of Invasive Intracranial Pressure Monitoring Devices in Neurocritical Care. Neurosurgical Focus, 43(5). https://doi.org/https://doi.org/10.3171/2017.8.FOCUS17450

Tempest, G. D., & Reiss, A. L. (2019). The Utility of Functional Near-Infrared Spectroscopy for Measuring Cortical Activity during Cycling Exercise. Medicine & Science in Sports & Exercise, 51(5), 979–987. https://doi.org/https://doi.org/10.1249/MSS.0000000000001875

Tracey, I., & Flower, R. (2014). The Warrior in the Machine: Neuroscience Goes to War. Nature Reviews Neuroscience, 15, 825–834. https://doi.org/https://doi.org/10.1038/nrn3835

Trigg, J., & Kalish, M. (2011). Explaining How the Mind Works: On the Relation Between Cognitive Science and Philosophy. Topics in Cognitive Science, 3(2), 399–424. https://doi.org/https://doi.org/10.1111/j.1756-8765.2011.01142.x

Young, A. E. R., Germon, T. J., Barnett, N. J., Manara, A. R., & Nelson, R. J. (2000). Behaviour of Near-Infrared Light in the Adult Human Head: Implications for Clinical Near-Infrared Spectroscopy. British Journal of Anaesthesia, 84(1), 38–42. https://doi.org/https://doi.org/10.1093/oxfordjournals.bja.a013379




DOI: http://dx.doi.org/10.33172/jp.v7i3.1288

Article Metrics

Abstract view : 0 times
PDF - 0 times

Lisensi Creative Commons
Jurnal Pertahanan is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.