THE ENERGY PROVISION DILEMMA OF COAL VERSUS WIND FROM THE ECONOMIC, ENVIRONMENTAL, AND SOCIAL PERSPECTIVE WITHIN THE ENERGY SECURITY FRAMEWORK

Novena Damar Asri(1*), Purnomo Yusgiantoro(2),

(1) Indonesia Defense University
(2) ITB
(*) Corresponding Author

Abstract


The energy security principle demands the fulfillment of availability, acceptability, affordability, accessibility, and sustainability. Under the financial constraints, it is very challenging to achieve. As a result, immediate decisions, often only based on the lowest cost neglecting the overall impacts, are taken. This study aims to reveal the energy provision dilemma through a literature review method and simple calculation analysis. This study intends to exemplify how to conduct an equitable analysis by comparing wind and coal power plants’ impacts from the economic, environmental, and social perspectives. This study finds that the mutually complement characteristics of NRE (New and Renewable Energy) and non-NRE (fossil energy sources) raise a dilemma in selecting the energy source, where the financial constraints exaggerate the dilemma. The study also finds that the electricity generating cost of coal is cheaper than wind, but the external costs turn over the result. Coal damages the environment more than wind, but the impacts are often neglected, and society bears the cost. A simple adsorption method could minimize the impacts, but it depends on the producers’ willingness to conduct, which eventually by the consumers’ willingness to pay the higher price. In the social aspect, both power plants have relatively more equal indirect impacts, but coal’s direct impacts are more detrimental than wind. While an energy source may excel the other, considering the specific circumstances is a must. Financial constraints aggravate the developing countries’ dilemma between achieving energy security or fulfilling the basic needs and pursuing economic growth


Full Text:

PDF

References


Afful-Dadzie, A., Afful-Dadzie, E., Awudu, I., & Banuro, J. K. (2017). Power generation capacity planning under budget constraint in developing countries. Applied Energy, 188, 71–82. https://doi.org/10.1016/j.apenergy.2016.11.090

Ang, B. W., Choong, W. L., & Ng, T. S. (2015). Energy security: Definitions, dimensions and indexes. Renewable and Sustainable Energy Reviews, 42, 1077–1093. https://doi.org/10.1016/j.rser.2014.10.064

APERC. (2007). A quest for energy security in the 21st century: Resources and constraints (A. A. Aponte (ed.)). APERC, Institute of Energy Economics.

Arifi, B., & Späth, P. (2018). Sleeping on coal: Trajectories of promoting and opposing a lignite-fired power plant in Kosovo. Energy Research and Social Science, 41(May), 118–127. https://doi.org/10.1016/j.erss.2018.04.012

Arvesen, A., & Hertwich, E. G. (2012). Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs. Renewable and Sustainable Energy Reviews, 16(8), 5994–6006. https://doi.org/10.1016/j.rser.2012.06.023

Asri, N. D., & Yusgiantoro, P. (2020a). Fuel type vs externalities in electricity cost analysis - Why sustainability is so challenging in Indonesia energy provision.

Asri, N. D., & Yusgiantoro, P. (2020b). The constraints of NRE development in Indonesia: How Kalimantan Timur survives under the energy paradoxes.

Barclay, R. M. R., Baerwald, E. F., & Gruver, J. C. (2007). Variation in bat and bird fatalities at wind energy facilities: Assessing the effects of rotor size and tower height. Canadian Journal of Zoology, 85(3), 381–387. https://doi.org/10.1139/Z07-011

British Petroleum. (2017). BP statistical review of world energy 2017 (Issue June).

Brown, G., & Raymond, C. M. (2014). Methods for identifying land use conflict potential using participatory mapping. Landscape and Urban Planning, 122, 196–208. https://doi.org/10.1016/j.landurbplan.2013.11.007

Brown, J. P., Pender, J., Wiser, R., Lantz, E., & Hoen, B. (2012). Ex post analysis of economic impacts from wind power development in U.S. counties. Energy Economics, 34(6), 1743–1754. https://doi.org/10.1016/j.eneco.2012.07.010

Colombo, E., Romeo, F., Mattarolo, L., Barbieri, J., & Morazzo, M. (2018). An impact evaluation framework based on sustainable livelihoods for energy development projects: an application to Ethiopia. Energy Research and Social Science, 39(November 2017), 78–92. https://doi.org/10.1016/j.erss.2017.10.048

Cornell, P. E. (2009). Energy and the three levels of national security: differentiating energy concerns within a national security context. Connections, 8(4), 63–80. https://www.jstor.org/stable/10.2307/26326186

Ding, H., He, M., & Deng, C. (2014). Lifecycle approach to assessing environmental friendly product project with internalizing environmental externality. Journal of Cleaner Production, 66(April 1995), 128–138. https://doi.org/10.1016/j.jclepro.2013.10.018

Dutu, R. (2016). Challenges and policies in Indonesia’s energy sector. Energy Policy, 98, 513–519. https://doi.org/10.1016/j.enpol.2016.09.009

Ekholm, T., Ghoddusi, H., Krey, V., & Riahi, K. (2013). The effect of financial constraints on energy-climate scenarios. Energy Policy, 59, 562–572. https://doi.org/10.1016/j.enpol.2013.04.001

Erb, M. (2016). Mining and the conflict over values in Nusa Tenggara Timur Province, Eastern Indonesia. Extractive Industries and Society, 3(2), 370–382. https://doi.org/10.1016/j.exis.2016.03.003

Galetovic, A., & Muñoz, C. M. (2013). Wind, coal, and the cost of environmental externalities. Energy Policy, 62, 1385–1391. https://doi.org/10.1016/j.enpol.2013.07.140

Ghimire, L. P., & Kim, Y. (2018). An analysis on barriers to renewable energy development in the context of Nepal using AHP. Renewable Energy, 129, 446–456. https://doi.org/10.1016/j.renene.2018.06.011

Gómez-navarro, T., & Ribó-pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(March), 131–141. https://doi.org/10.1016/j.rser.2018.03.015

Goodarzi, F., Huggins, F. E., & Sanei, H. (2008). Assessment of elements, speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. International Journal of Coal Geology, 74(1), 1–12. https://doi.org/10.1016/j.coal.2007.09.002

Gorayeb, A., Brannstrom, C., de Andrade Meireles, A. J., & de Sousa Mendes, J. (2018). Wind power gone bad: Critiquing wind power planning processes in northeastern Brazil. Energy Research and Social Science, 40(November 2017), 82–88. https://doi.org/10.1016/j.erss.2017.11.027

Gupta, A., & Spears, D. (2017). Health externalities of India’s expansion of coal plants: Evidence from a national panel of 40,000 households. Journal of Environmental Economics and Management, 86, 262–276. https://doi.org/10.1016/j.jeem.2017.04.007

Hiendro, A., Kurnianto, R., Rajagukguk, M., Simanjuntak, Y. M., & Junaidi. (2013). Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia. Energy, 59, 652–657. https://doi.org/10.1016/j.energy.2013.06.005

Katsaprakakis, D. Al. (2012). A review of the environmental and human impacts from wind parks. A case study for the Prefecture of Lasithi, Crete. Renewable and Sustainable Energy Reviews, 16(5), 2850–2863. https://doi.org/10.1016/j.rser.2012.02.041

Kennedy, S. F. (2018). Indonesia’s energy transition and its contradictions: Emerging geographies of energy and finance. Energy Research & Social Science, 41(June 2017), 230–237. https://doi.org/10.1016/j.erss.2018.04.023

Kikuchi, R. (2008). Adverse impacts of wind power generation on collision behaviour of birds and anti-predator behaviour of squirrels. Journal for Nature Conservation, 16(1), 44–55. https://doi.org/10.1016/j.jnc.2007.11.001

Kim, E. S., Chung, J. B., & Seo, Y. (2018). Korean traditional beliefs and renewable energy transitions: Pungsu, shamanism, and the local perception of wind turbines. Energy Research and Social Science, 46(July), 262–273. https://doi.org/10.1016/j.erss.2018.07.024

Kołodyńska, D., Hałas, P., Franus, M., & Hubicki, Z. (2017). Zeolite properties improvement by chitosan modification—Sorption studies. Journal of Industrial and Engineering Chemistry, 52, 187–196. https://doi.org/10.1016/j.jiec.2017.03.043

Krishnan C, M., & Gupta, S. (2018). Political pricing of electricity – Can it go with universal service provision? Energy Policy, 116(June 2017), 373–381. https://doi.org/10.1016/j.enpol.2018.02.009

Leipprand, A., & Flachsland, C. (2018). Regime destabilization in energy transitions: The German debate on the future of coal. Energy Research and Social Science, 40(September 2017), 190–204. https://doi.org/10.1016/j.erss.2018.02.004

Liebe, U., Bartczak, A., & Meyerhoff, J. (2017). A turbine is not only a turbine: The role of social context and fairness characteristics for the local acceptance of wind power. Energy Policy, 107(May), 300–308. https://doi.org/10.1016/j.enpol.2017.04.043

Martosaputro, S., & Murti, N. (2014). Blowing the wind energy in Indonesia. Energy Procedia, 47, 273–282. https://doi.org/10.1016/j.egypro.2014.01.225

McCubbin, D., & Sovacool, B. K. (2013). Quantifying the health and environmental benefits of wind power to natural gas. Energy Policy, 53, 429–441. https://doi.org/10.1016/j.enpol.2012.11.004

MEMR. (2012). General Plan of Electricity Draft 2012-2031.

MEMR. (2017). Handbook of Energy & Economic Statistics of Indonesia 2017.

Narula, K., & Reddy, B. S. (2016). A SES (sustainable energy security) index for developing countries. Energy, 94, 326–343. https://doi.org/10.1016/j.energy.2015.10.106

Nashar, M. (2015). Analisa kelayakan bisnis proyek pembangkit listrik tenaga angin (PLTB) di Indonesia dengan menggunakan software Retscreen. Jurnal Ilmiah Manajemen Dan Bisnis, 1(1), 1–8.

Nasrullah, M., & Suparman. (2010). Perbandingan biaya pembangkitan listrik nuklir dan fosil dengan mempertimbangkan aspek lingkungan. In BATAN (Ed.), Seminar Nasional ke-16 Teknologi dan Keselamatan PLTN serta Fasilitas Nuklir (pp. 348–352). BATAN.

Noel, L., Brodie, J. F., Kempton, W., Archer, C. L., & Budischak, C. (2017). Cost minimization of generation, storage, and new loads, comparing costs with and without externalities. Applied Energy, 189, 110–121. https://doi.org/10.1016/j.apenergy.2016.12.060

Otero, C., Manchado, C., Arias, R., Bruschi, V. M., Gómez-Jáuregui, V., & Cendrero, A. (2012). Wind energy development in Cantabria, Spain. Methodological approach, environmental, technological and social issues. Renewable Energy, 40(1), 137–149. https://doi.org/10.1016/j.renene.2011.09.008

Papastefanou, C. (2010). Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: A review. Journal of Environmental Radioactivity, 101(3), 191–200. https://doi.org/10.1016/j.jenvrad.2009.11.006

Partridge, I. (2018). Cost comparisons for wind and thermal power generation. Energy Policy, 112(September 2017), 272–279. https://doi.org/10.1016/j.enpol.2017.10.006

Porate, K. B., Thakre, K. L., & Bodhe, G. L. (2013). Impact of wind power on generation economy and emission from coal based thermal power plant. International Journal of Electrical Power and Energy Systems, 44(1), 889–896. https://doi.org/10.1016/j.ijepes.2012.08.029

PT PLN. (2018). The Power Supply Business Plan of PT. PLN 2018-2027.

Rewlay-ngoen, C., Papong, S., & Sampattagul, S. (2014). The NPP and social asset impacts of acidification from coal-fired power plant in Thailand. Energy Procedia, 52, 234–241. https://doi.org/10.1016/j.egypro.2014.07.074

Rhodes, J. D., King, C., Gulen, G., Olmstead, S. M., Dyer, J. S., Hebner, R. E., Beach, F. C., Edgar, T. F., & Webber, M. E. (2017). A geographically resolved method to estimate levelized power plant costs with environmental externalities. Energy Policy, 102(December 2016), 491–499. https://doi.org/10.1016/j.enpol.2016.12.025

Rodgers, M., Coit, D., Felder, F., & Carlton, A. (2019). Assessing the effects of power grid expansion on human health externalities. Socio-Economic Planning Sciences, 66(July 2018), 92–104. https://doi.org/10.1016/j.seps.2018.07.011

Saidur, R., Rahim, N. A., Islam, M. R., & Solangi, K. H. (2011). Environmental impact of wind energy. Renewable and Sustainable Energy Reviews, 15(5), 2423–2430. https://doi.org/10.1016/j.rser.2011.02.024

Sakulniyomporn, S., Kubaha, K., & Chullabodhi, C. (2011). External costs of fossil electricity generation: Health-based assessment in Thailand. Renewable and Sustainable Energy Reviews, 15(8), 3470–3479. https://doi.org/10.1016/j.rser.2011.05.004

Sanei, H., Goodarzi, F., & Outridge, P. M. (2010). Spatial distribution of mercury and other trace elements in recent lake sediments from central Alberta, Canada: An assessment of the regional impact of coal-fired power plants. International Journal of Coal Geology, 82(1–2), 105–115. https://doi.org/10.1016/j.coal.2010.01.010

Scherhaufer, P., Höltinger, S., Salak, B., Schauppenlehner, T., & Schmidt, J. (2018). A participatory integrated assessment of the social acceptance of wind energy. Energy Research and Social Science, 45(June), 164–172. https://doi.org/10.1016/j.erss.2018.06.022

Shaahid, S. M., Al-Hadhrami, L. M., & Rahman, M. K. (2013). Economic feasibility of development of wind power plants in coastal locations of Saudi Arabia - A review. Renewable and Sustainable Energy Reviews, 19, 589–597. https://doi.org/10.1016/j.rser.2012.11.058

Shi, X., Liu, X., & Yao, L. (2016). Assessment of instruments in facilitating investment in off-grid renewable energy projects. Energy Policy, 95, 437–446. https://doi.org/10.1016/j.enpol.2016.02.001

Siddayao, C. M. (1992). Energy investments and environmental implications: Key policy issues in developing countries. Energy Policy, 20(3), 223–232. https://doi.org/10.1016/0301-4215(92)90080-L

Song, X., Xu, J., Zhang, Z., Shen, C., Xie, H., Peña-Mora, F., & Wu, Y. (2017). Reconciling strategy towards construction site selection-layout for coal-fired power plants. Applied Energy, 204(July), 846–865. https://doi.org/10.1016/j.apenergy.2017.07.091

Sugiyono, A. (2005). Biaya Eksternal dari Pembangkit Listrik Batubara. Seminar Akademik Ilmu Ekonomi 2005, April, 1–13. https://agussugiyono.wordpress.com/2010/04/29/biaya-eksternal-dari-pembangkit-listrik-batubara/

Sundqvist, T. (2004). What causes the disparity of electricity externality estimates? Energy Policy, 32(15), 1753–1766. https://doi.org/10.1016/S0301-4215(03)00165-4

Thomson, H., & Kempton, W. (2018). Perceptions and attitudes of residents living near a wind turbine compared with those living near a coal power plant. Renewable Energy, 123, 301–311. https://doi.org/10.1016/j.renene.2017.10.036

Tohdee, K., Kaewsichan, L., & Asadullah. (2018). Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite. Journal of Environmental Chemical Engineering, 6(2), 2821–2828. https://doi.org/10.1016/j.jece.2018.04.030

Veldhuis, A. J., & Reinders, A. H. M. E. (2015). Reviewing the potential and cost-effectiveness of off-grid PV systems in Indonesia on a provincial level. Renewable and Sustainable Energy Reviews, 52, 757–769. https://doi.org/10.1016/j.rser.2015.07.126

Vujić, J., Antić, D. P., & Vukmirović, Z. (2012). Environmental impact and cost analysis of coal versus nuclear power: The U.S. case. Energy, 45(1), 31–42. https://doi.org/10.1016/j.energy.2012.02.011

Wang, J., Wang, R., Zhu, Y., & Li, J. (2018). Life cycle assessment and environmental cost accounting of coal-fired power generation in China. Energy Policy, 115(January), 374–384. https://doi.org/10.1016/j.enpol.2018.01.040

Wang, S., Zhang, Y., Gu, Y., Wang, J., liu, Z., Zhang, Y., Cao, Y., Romero, C. E., & Pan, W. ping. (2016). Using modified fly ash for mercury emissions control for coal-fired power plant applications in China. Fuel, 181, 1230–1237. https://doi.org/10.1016/j.fuel.2016.02.043

Yusgiantoro, P. (2000). Ekonomi Energi: Teori dan Praktik (1st ed.). Pustaka LP3ES.

Zaman, R., Brudermann, T., Kumar, S., & Islam, N. (2018). A multi-criteria analysis of coal-based power generation in Bangladesh. Energy Policy, 116(January), 182–192. https://doi.org/10.1016/j.enpol.2018.01.053

Zerrahn, A. (2017). Wind Power and Externalities. Ecological Economics, 141, 245–260. https://doi.org/10.1016/j.ecolecon.2017.02.016

Zheng, L., Zheng, L., & Wei, L. (2011). Environmental impact and control measures of new wind power projects. Procedia Environmental Sciences, 10(PART C), 2788–2791. https://doi.org/10.1016/j.proenv.2011.09.432




DOI: https://doi.org/10.33172/jp.v6i3.1049


INDEXED BY:
Journal Terindex di Garuda

Office Address:
Lembaga Penelitian dan Pengabdian Kepada Masyarakat
Republic of Indonesia Defense University
Jl. Salemba Raya No.14, Paseban,Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10440, Indonesia
Email: jurnal.unhan@idu.ac.id



Lisensi Creative Commons
Jurnal Pertahanan: Media Informasi tentang Kajian dan Strategi Pertahanan yang Mengedepankan Identity, Nasionalism dan Integrity is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.