Addition of Dehacide 267 As an Anti-Fungal Smart Material on the Body Coating of the MV3 Garuda Limousine

Muhammad Naufal Rizky Wibowo(1), Tedi Kurniadi(2*), Minandre Wiratama(3), Arie Hardian(4),

(1) Universitas Jenderal Achmad Yani
(2) Universitas Pertahanan Republik Indonesia
(3) Universitas Pertahanan Republik Indonesia
(4) Universitas Jenderal Achmad Yani
(*) Corresponding Author

Abstract


Military vehicles, such as the MV3 Garuda Limousine, operate in harsh environments that often lead to fungal growth, degrading the protective body coating. This study addressed the issue by integrating Dehacide 267, a non-oxidizing biocide composed of a synergistic combination of isothiazolines and bronopol, into an acrylic-based coating. The coating, prepared with a 2% (w/w) biocide concentration, was tested for antifungal efficacy against Aspergillus niger and Penicillium chrysogenum. The results confirmed that the addition of Dehacide 267 significantly inhibited fungal growth. The biocide achieved up to 95% inhibition after four weeks, demonstrating high effectiveness in preventing fungal colonization. The proposed mechanism of action involves damaging the fungal cell membrane, which is consistent with the biocide’s properties. Furthermore, testing showed that the biocide-enhanced coatings exhibited superior resistance to UV rays and rain, indicating improved structural durability. This research establishes Dehacide 267 as an effective antifungal smart material for specialized vehicle coatings.

Keywords


acrylic coating; biocide; dehacide 267; smart material

Full Text:

PDF

References


A. P. Laksmana, & H. Farida, Undergraduate Thesis, Efektivitas Air Rebusan Kulit Kayu Manis (Cinnamomum Burmannii) Sebagai Antiseptik Untuk Higiene Tangan, Departement of Medicine, Faculty of Medicine, Universitas Diponegoro, Indonesia, 2019. https://eprints.undip.ac.id/69247/

Ali, A., Jamil, M. I., Jiang, J., Shoaib, M., Amin, B. U., Luo, S., & Zhang, Q. (2020). An Overview of Controlled-Biocide-Release Coating Based on Polymer Resin for Marine Antifouling Applications. Journal Of Polymer Research, 27(4), 85. https://doi.org/10.1007/s10965-020-02054-z

Anandkumar, B., Krishna, N. G., Solomon, R. V., Nandakumar, T., & Philip, J. (2023). Synergistic Enhancement of Corrosion Protection of Carbon Steels Using Corrosion Inhibitors and Biocides: Molecular Adsorption Studies, Dft Calculations and Long-Term Corrosion Performance Evaluation. Journal Of Environmental Chemical Engineering, 11(3), 109842. https://doi.org/10.1016/j.jece.2023.109842

Bellotti, N., Romagnoli, R., Quintero, C., Domínguez-Wong, C., Ruiz, F., & Deyá, C. (2015). Nanoparticles as antifungal additives for indoor water borne paints. Progress in Organic Coatings, 86, 33-40. https://doi.org/10.1016/j.porgcoat.2015.03.006

Brilliantoro, B. (2022). Literature Review: Studi Pengendalian Korosi menggunakan Coating Zinc (Zn), Zinc Phosphate (Zn3(PO4)2), Zinc Silicate (ZnSiO4) dan Nickel (Ni) pada Industri Otomotif. JIIP-Jurnal Ilmiah Ilmu Pendidikan, 5(6), 1878-1885. https://doi.org/10.54371/jiip.v5i6.658

C. Steven McDaniel, U.S. Patent No. 20200109297, 27 March. 2020. https://patents.justia.com/patent/20200109297

C. Steven McDaniel, U.S. Patent No. 7939500, 10 May. 2011. https://patents.google.com/patent/US7939500B2/en

C. Steven McDaniel, U.S. Patent No. 8497248, 30 July. 2013. https://patents.google.com/patent/US8497248B2/en

Dileep, P., Jacob, S., & Narayanankutty, S. K. (2020). Functionalized nanosilica as an antimicrobial additive for waterborne paints. Progress in organic coatings, 142, 105574. https://doi.org/10.1016/j.porgcoat.2020.105574

Jalaie, A., Afshaar, A., Mousavi, S. B., & Heidari, M. (2023). Investigation of the release rate of biocide and corrosion resistance of vinyl-, acrylic-, and epoxy-based antifouling paints on steel in marine infrastructures. Polymers, 15(19), 3948. https://doi.org/10.3390/polym15193948

Ji, J., Liu, N., Tian, Y., Li, X., Zhai, H., Zhao, S., & Feng, L. (2022). Transparent Polyurethane Coating with Synergistically Enhanced Antibacterial Mechanism Composed of Low Surface Free Energy and Biocide. Chemical Engineering Journal, 445, 136716. https://doi.org/10.1016/j.cej.2022.136716

Kugel, A., Stafslien, S., & Chisholm, B. J. (2011). Antimicrobial Coatings Produced By “Tethering” Biocides to the Coating Matrix: A Comprehensive Review. Progress In Organic Coatings, 72(3), 222-252. https://doi.org/10.1016/j.porgcoat.2011.07.004

Londhe, S., Patil, S., Krishnadas, K., Sawant, A. M., Yelchuri, R. K., & Chada, V. G. (2019). Fungal diversity on decorative paints of India. Progress in Organic Coatings, 135, 1-6. https://doi.org/10.1016/j.porgcoat.2019.05.020

Marceaux, S., Martin, C., Margaillan, A., & Bressy, C. (2018). Effects of accelerated ageing conditions on the mechanism of chemically-active antifouling coatings. Progress in Organic Coatings, 125, 257-265. https://doi.org/10.1016/j.porgcoat.2018.09.004

Santosa, S. P. (2025). Advancing Electric Vehicle Technology for Defense and Civilian Applications. In 2025 8th International Conference on Electric Vehicular Technology (ICEVT) (pp. 1-4). IEEE. https://doi.org/10.1109/ICEVT67191.2025.11184068

Senthil, K. P., & Ismail, M. A. (2021). Evaluation of the Relative Resistance of Emulsion Paints in the Container against Microorganisms. International Journal of Applied Research and Technology, Vol 6. https://doi.org./10.24163/ijart/2017/2

Setiawan, A., Setiawan, F., Juliasih, N. L. G. R., Widyastuti, W., Laila, A., Setiawan, W. A., & Arai, M. (2022). Fungicide activity of culture extract from Kocuria palustris 19C38A1 against Fusarium oxysporum. Journal of fungi, 8(3), 280. https://doi.org/10.3390/jof8030280

Silva, V., Silva, C., Soares, P., Garrido, E. M., Borges, F., & Garrido, J. (2020). Isothiazolinone biocides: chemistry, biological, and toxicity profiles. Molecules, 25(4), 991. https://doi.org/10.3390/molecules25040991


Refbacks

  • There are currently no refbacks.



Image
Office Address:
Faculty of Military Mathematics and Natural Sciences
Republic of Indonesia Defense University
Indonesian Peace and Security Center Complex, Sentul, Bogor 16810, Indonesia
Email: munisi.unhanri@gmail.com | WhatsApp: +6285742313964


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Munisi: Military Mathematics and Natural Sciences View