Comparison Naïve Bayes and SVM to Classify Drought-Infected Rice Plants Based on Morphological Characteristics in Supporting National Food Security
(1) Department of Mathematics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
(2) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
(3) Department of Mathematics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
(4) Department of Informatics, Faculty Defense Sciences and Technology, Republic of Indonesia Defense University, Bogor, Indonesia
(5) Department of Informatics, Faculty Defense Sciences and Technology, Republic of Indonesia Defense University, Bogor, Indonesia
(6) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Iqbal, A., Fahad, S., Iqbal, M., Alamzeb, M., Ahmad, A., Anwar, S., Khan, A. A., Amanullah, Arif, M., Inamullah, Shaheenshah, Saeed, M., & Song, M. (2020). Special Adaptive Features of Plant Species in Response to Drought (pp. 77–118). https://doi.org/10.1007/978-3-030-40277-8_4
Miftahudin, Putri, R. E., & Chikmawati, T. (2020). Vegetative morphophysiological responses of four rice cultivars to drought stress. Biodiversitas, 21(8), 3727–3734. https://doi.org/10.13057/biodiv/d210840
S. Pulwarty, R., & Sivakumar, M. V. K. (2014). Information systems in a changing climate: Early warnings and drought risk management. Weather and Climate Extremes, 3, 14–21. https://doi.org/10.1016/j.wace.2014.03.005
Satrio, R. D., Fendiyanto, M. H., Supena, E. D. J., Suharsono, & Miftahudin. (2019). Identification of drought-responsive regulatory genes by hierarchical selection of expressed sequence tags and their expression under drought stress in rice. International Journal of Agriculture and Biology, 22(6), 1524–1532. https://doi.org/10.17957/IJAB/15.1230
Satrio, R. D., Fendiyanto, M. H., Supena, E. D. J., Suharsono, S., & Miftahudin, M. (2021). Genome-wide SNP discovery, linkage mapping, and analysis of QTL for morpho-physiological traits in rice during vegetative stage under drought stress. Physiology and Molecular Biology of Plants, 27(11), 2635–2650. https://doi.org/10.1007/s12298-021-01095-y
Tarek H. M. Abou-El-Enien et al. (2015). A Comparison among Support Vector Machine and other Machine Learning Classification Algorithms. IPASJ International Journal of Computer Science, , 3(5), 25–35.
Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. (2020). Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 170, 105256. https://doi.org/10.1016/j.compag.2020.105256
Mohidem, N. A., Hashim, N., Shamsudin, R., & Man, H. C. (2022, June 1). Rice for Food Security: Revisiting Its Production, Diversity, Rice Milling Process and Nutrient Content. Agriculture (Switzerland). MDPI. https://doi.org/10.3390/agriculture12060741
Paiman, Ardiyanta, Ansar, M., Effendy, I., & Sumbodo, B. T. (2020). Rice cultivation of superior variety in swamps to increase food security in Indonesia. Reviews in Agricultural Science. Gifu University - United Graduate School of Agricultural Science. https://doi.org/10.7831/ras.8.0_300
Wang, X. (2022, April 1). Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land. MDPI. https://doi.org/10.3390/land11040484
Toulotte, J. M., Pantazopoulou, C. K., Sanclemente, M. A., Voesenek, L. A. C. J., & Sasidharan, R. (2022, February 1). Water stress resilient cereal crops: Lessons from wild relatives. Journal of Integrative Plant Biology. John Wiley and Sons Inc. https://doi.org/10.1111/jipb.13222
Rico-Chávez, A. K., Franco, J. A., Fernandez-Jaramillo, A. A., Contreras-Medina, L. M., Guevara-González, R. G., & Hernandez-Escobedo, Q. (2022, April 1). Machine Learning for Plant Stress Modeling: A Perspective towards Hormesis Management. Plants. MDPI. https://doi.org/10.3390/plants11070970
Alfred, R., Obit, J. H., Chin, C. P. Y., Haviluddin, H., & Lim, Y. (2021). Towards paddy rice smart farming: A review on big data, machine learning, and rice production tasks. IEEE Access. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2021.3069449
Verma, V., Vishal, B., Kohli, A., & Kumar, P. P. (2021, November 1). Systems-based rice improvement approaches for sustainable food and nutritional security. Plant Cell Reports. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00299-021-02790-6
Narayan, Y. (2020). Comparative analysis of SVM and Naive Bayes classifier for the SEMG signal classification. In Materials Today: Proceedings (Vol. 37, pp. 3241–3245). Elsevier Ltd. https://doi.org/10.1016/j.matpr.2020.09.093
Abdullah, D. M., & Abdulazeez, A. M. (2021). Machine Learning Applications based on SVM Classification: A Review. Qubahan Academic Journal, 1(2), 81–90. https://doi.org/10.48161/qaj.v1n2a50
Anggrawan, A., Hairani, H., & Satria, C. (2023). Improving SVM Classification Performance on Unbalanced Student Graduation Time Data Using SMOTE. International Journal of Information and Education Technology, 13(2), 289–295. https://doi.org/10.18178/ijiet.2023.13.2.1806
Yasar, A., & Saritas, M. M. (2019). Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification. International Journal of Intelligent Systems and Applications in Engineering, 7(2), 88–91.
https://doi.org/10.18201/ijisae.2019252786
Lubis, C. P., Rosnelly, R., Roslina, R., Situmorang, Z., & Wanayumini, W. (2021). PENERAPAN METODE NAÏVE BAYES DAN C4.5 PADA PENERIMAAN PEGAWAI DI UNIVERSITAS POTENSI UTAMA. CSRID (Computer Science Research and Its Development Journal), 12(1), 51. https://doi.org/10.22303/csrid.12.1.2020.51-62
Riyadi, S., Siregar, M. M., Margolang, K. fadhli F., & Andriani, K. (2022). ANALYSIS OF SVM AND NAIVE BAYES ALGORITHM IN CLASSIFICATION OF NAD LOANS IN SAVE AND LOAN COOPERATIVES. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 8(3), 261–270. https://doi.org/10.33330/jurteksi.v8i3.1483
Saptadi, N. T. S., Suyuti, A., Ilham, A. A., & Nurtanio, I. (2023). Modeling of Organic Waste Classification as Raw Materials for Briquettes using Machine Learning Approach. International Journal of Advanced Computer Science and Applications, 14(3), 577–585. https://doi.org/10.14569/IJACSA.2023.0140367
Tharwat, A. (2021). Classification assessment methods. Applied Computing and Informatics, 17(1), 168–192.https://doi.org/10.1016/j.aci.2018.08.003
Chen, R. C., Dewi, C., Huang, S. W., & Caraka, R. E. (2020). Selecting critical features for data classification based on machine learning methods. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00327-4
Chen, F., Yu, L., Mao, J., Yang, Q., Wang, D., & Yu, C. (2024). A novel data-characteristic-driven modeling approach for imputing missing value in industrial statistics: A case study of China electricity statistics. Applied Energy, 373, 123854.
Rácz, A., Bajusz, D., & Héberger, K. (2021). Effect of dataset size and train/test split ratios in qsar/qspr multiclass classification. Molecules, 26(4). https://doi.org/10.3390/molecules26041111
Refbacks
- There are currently no refbacks.
![]() | Office Address: Faculty of Military Mathematics and Natural Sciences Republic of Indonesia Defense University Indonesian Peace and Security Center Complex, Sentul, Bogor 16810, Indonesia Email: munisi.unhanri@gmail.com | WhatsApp: +6285742313964 |

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
| Munisi: Military Mathematics and Natural Sciences View |



