The Relationship of Mutualism Between the Diversity of Gut Bacteria Metabolism and The Human Body: A Review

Alifka Fajri Utama(1*), Arin Sucia Adiningsih(2), Azizah Eka Milasari(3), Reihana Marsha Cahyarani(4), Tiara Rahayu(5), Miftahul Huda Fendiyanto(6), Rizky Dwi Satrio(7),

(1) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor
(2) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor
(3) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor
(4) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor
(5) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor
(6) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor
(7) Department of Biology, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor
(*) Corresponding Author


Do you know the relationship of mutualism between the diversity of gut bacteria metabolism and the human body? Hearing bacteria our thinking is directed to something that pathogenic and parasitic to the host, not all bacteria can cause disease. Precisely the human body has a mutual relationship between gut bacteria and human metabolism such as helping in the digestive process of both coarse fiber, protein, fat, detoxifying toxins as well as endurance and maintaining homeostatic. The understanding of the mechanism of homeostatic gut bacteria is not fully known especially until the basic genetics and metabolism in each of these gut bacteria. This paper is expected to improve understanding of the interaction of intestinal bacteria such as Bacteroides, Bifidobacterium, Escherichia coli, Lactobacillus, and Saccharomyces boulardii to human metabolism, especially in detecting diseases and improving the health of the body. The focus of this paper is on the diversity of bacterial metabolic pathways in the human gut as well as the influence of the presence of such bacteria in the body. The studies was completed by study libraries with qualitative and quantitative data.


Gut Bacteria Diversity; Metabolic Pathway; Mutualism; Human Body

Full Text:



Adam A, Levrat-Verny MA, Lopez HW, Leuillet M, Demigne C, Remesy C. Whole wheat and triticale flours with differing viscosities stimulate cecal fermentations and lower plasma and hepatic lipids in rats. J Nutr. 2001;131:1770– 1776

Aggarwal, J. (2013). Probiotics and their Effects on Metabolic Diseases: An Update. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. Vol-7(1): 173-177

Aguirre, M., Eck, A., Koenen, M. E., Svalkoul, P. H. M., Budding, A. E., and Venema, K. (2016). Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Res. Microbiol. 167, 114–125. DOI: 10.1016/j.resmic.2015.09.006

Albenberg, L.; Esipova, T.V.; Judge, C.P.; Bittinger, K.; Chen, J.; Laughlin, A.; Grunberg, S.; Baldassano, R.N.; Lewis, J.D.; Li, H.; et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014, 147, 1055–1063. [CrossRef]

Alessandri G, Milani C, Mancabelli L, Mangifesta M, Lugli GA, Viappiani A, et al. The impact of human facilitated selection on the gut microbiota of domesticated mammals. FEMS Microbiol Ecol 2019;95(9).

Badia, R.; Brufau, M.T.; Guerrero-Zamora, A.M.; Lizardo, R.; Dobrescu, I.; Martin-Venegas, R.; Ferrer, R.; Salmon, H.; Martínez, P.; Brufau, J. β-galactomannan, and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells. Clin. Vaccine Immunol. 2012, 19, 368–376. [CrossRef]

Bajaj, B.K.; Claes, I.J.J.; Lebeer, S. Functional mechanisms of probiotics. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 321–

327. [CrossRef] events: A systematic review. BMJ Open 2014, 4, e005047. [CrossRef] [PubMed]

Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. [CrossRef] [PubMed]

Boden G, Shulman GI. 2002. Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and β-cell dysfunction. Eur. J. Clin. Invest. 32: 14S-23S

Brandão, R.L.; Castro, I.M.; Bambirra, E.A.; Amaral, S.C.; Fietto, L.G.; Tropia, M.J.M.; Neves, M.J.; Dos Santos, R.G.; Gomes, N.C.M.; Nicoli, J.R. Intracellular signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1998, 64, 564–568. [CrossRef]

Buts, J.P.; Bernasconi, P.; Van Craynest, M.P.; Maldague, P.; Meyer, R. Response of human and rat small intestinal mucosa to oral administration of saccharomyces boulardii. Pediatr. Res. 1986, 20, 192–196. [CrossRef] [PubMed]

Buts, J.P.; Bernasconi, P.; Vaerman, J.P.; Dive, C. Stimulation of secretory IgA and a secretory component of immunoglobulins in the small intestine of rats treated with Saccharomyces boulardii. Dig. Dis. Sci. 1990, 35, 251–256. [CrossRef] [PubMed]

Buts, J.P.; Dekeyser, N.; Stilmant, C.; Delem, E.; Smets, F.; Sokal, E. Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatr. Res. 2006, 60, 24–29. [CrossRef] [PubMed]

Buts, J.P.; De Keyser, N.; Raedemaeker, L. De Saccharomyces boulardii enhances rat intestinal enzyme expression by the endoluminal release of polyamines. Pediatr. Res. 1994, 36, 522–527. [CrossRef] [PubMed]

Buts, J.P.; De Keyser, N.; Marandi, S.; Hermans, D.; Sokal, E.M.; Chae, Y.H.E.; Lambotte, L.; Chanteux, H.; Tulkens, P.M.

Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. Gut 1999, 45, 89–96. [CrossRef]

Buts, J.-P.; De Keyser, N.; Stilmant, C.; Sokal, E.; Marandi, S. Saccharomyces boulardii Enhances N-Terminal Peptide Hydrolysis in Suckling Rat Small Intestine by Endoluminal Release of a Zinc-Binding Metalloprotease. Pediatr. Res. 2002, 51, 528–534. [CrossRef]

Buts, J.P.; Keyser, N. De Transduction pathways regulating the trophic effects of Saccharomyces boulardii in rat intestinal mucosa. Scand. J. Gastroenterol. 2010, 45, 175–185. [CrossRef]

Castagliuolo, I.; Riegler, M.F.; Valenick, L.; LaMont, J.T.; Pothoulakis, C. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect. Immun. 1999, 67, 302–307. [CrossRef]

Castagliuolo, I.; Thomas Lamont, J.; Nikulasson, S.T.; Pothoulakis, C. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect. Immun. 1996, 64, 5225–5232. [CrossRef]

Chang, C.; Wang, K.; Zhou, S.N.; Wang, X.D.; Wu, J.E. Protective Effect of Saccharomyces boulardii on Deoxynivalenol- Induced Injury of Porcine Macrophage via Attenuating p38 MAPK Signal Pathway. Appl. Biochem. Biotechnol. 2017, 182, 411–427. [CrossRef]

Chen, K.-H.; Miyazaki, T.; Tsai, H.-F.; Bennett, J.E. The bZip transcription factor Cgap1p is involved in multidrug resistance and required for activation of multidrug transporter gene CgFLR1 in Candida glabrata. Gene 2007, 386, 63–72. [CrossRef]

Cordonnier, C.; Thévenot, J.; Etienne-Mesmin, L.; Denis, S.; Alric, M.; Livrelli, V.; Blanquet-Diot, S. Dynamic In Vitro Models of the Human Gastrointestinal Tract as Relevant Tools to Assess the Survival of Probiotic Strains and Their Interactions with Gut Microbiota. Microorganisms 2015, 3, 725–745. [CrossRef]

Cusumano, C.K.; Hultgren, S.J. Bacterial adhesion—A source of alternate antibiotic targets. drugs 2009, 12, 699–705. [PubMed]

Czerucka, D.; Roux, I.; Rampal, P. Saccharomyces boulardii inhibits secretagogue-mediated adenosine 30,50-cyclic monophosphate induction in intestinal cells. Gastroenterology 1994, 106, 65–72. [CrossRef]

Dalmasso, G.; Cottrez, F.; Imbert, V.; Lagadec, P.; Peyron, J.F.; Rampal, P.; Czerucka, D.; Groux, H. Saccharomyces boulardii Inhibits Inflammatory Bowel Disease by Trapping T Cells in Mesenteric Lymph Nodes. Gastroenterology 2006, 131, 1812–1825. [CrossRef] [PubMed]

de Arauz, L.J.; Jozala, A.F.; Mazzola, P.G.; Vessoni Penna, T.C. Nisin biotechnological production and application: A review. Trends Food Sci. Technol. 2009, 20, 146–154. [CrossRef]

Delzenne NM, Daubioul C, Neyrinck A, Lasa M, Taper HS. Inulin and oligofructose modulate lipid metabolism in animals: a review of biochemical events and prospects. Br J Nutr. 2002;87:255–259

Deeney, D.; Gareau, M.G.; Marco, M.L. 2018. Intestinal Lactobacillus in health and disease, a driver, or just along for the ride? Curr. Opin. Biotechnol. 49, 140–147.

Ducluzeau, R.; Bensaada, M. Comparative effect of a single or continuous administration of “Saccharomyces boulardii” on the establishment of various strains of “candida” in the digestive tract of gnotobiotic mice. Ann. Microbiol. (Paris) 1982, 133, 491–501. [PubMed]

Du Le, H.; Trinh, K.S. Survivability of Lactobacillus acidophilus, Bacillus clausii, and Saccharomyces boulardii

encapsulated in alginate gel microbeads. Carpathian J. Food Sci. Technol. 2018, 10, 95–103.

Edwards-ingram, L.C.; Gent, M.E.; Hoyle, D.C.; Hayes, A.; Stateva, L.I.; Oliver, S.G. Comparative Genomic Hybridization Provides New Insights Into the Molecular Taxonomy of the Saccharomyces Sensu Stricto Complex. Genome Res. 2004, 14, 1043–1051. [CrossRef] [PubMed]

Edwards-Ingram, L.; Gitsham, P.; Burton, N.; Warhurst, G.; Clarke, I.; Hoyle, D.; Oliver, S.G.; Stateva, L. Genotypic and Physiological Characterization of Saccharomyces boulardii, the Probiotic Strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2007, 73, 2458–2467. [CrossRef]

Fidan, I.; Kalkanci, A.; Yesilyurt, E.; Yalcin, B.; Erdal, B.; Kustimur, S.; Imir, T. Effects of Saccharomyces boulardii on cytokine secretion from intraepithelial lymphocytes infected by Escherichia coli and Candida albicans. Mycoses 2009, 52, 29–34. [CrossRef]

Fietto, J.L.; Araújo, R.S.; Valadão, F.N.; Fietto, L.G.; Brandão, R.L.; Neves, M.J.; Gomes, F.C.; Nicoli, J.R.; Castro, I.M. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Can. J. Microbiol. 2004, 50, 615–621. [CrossRef] [PubMed]

Filho-Lima, J.V.M.; Vieira, E.C.; Nicoli, J.R. Antagonistic effect of Lactobacillus acidophilus, Saccharomyces boulardii and Escherichia coli combinations against experimental infections with Shigella flexneri and Salmonella enteritidis subsp. Typhimurium in gnotobiotic mice. J. Appl. Microbiol. 2000, 88, 365–370. [CrossRef]

Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J.M.; Topping, D.L.; Suzuki, T.; et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469, 543–

549. [CrossRef]

Girard-Pipau, F.; Pompei, A.; Schneider, S.; Nano, J.L.; Hebuterne, X.; Boquet, P.; Rampal, P. Intestinal microflora, short- chain and cellular fatty acids, the influence of a probiotic Saccharomyces boulardii. Microb. Ecol. Health Dis. 2002, 14, 221–228. [CrossRef]

GMitterdorfer; WKneifel; HViernstein Utilization of prebiotic carbohydrates by yeasts of therapeutic relevance. Lett. Appl. Microbiol. 2001, 34, 251–255.

Gohir, W., Ratcliffe, E. M., & Sloboda, D. M. (2014). Of the bugs that shape us: maternal obesity, the gut microbiome, and long-term disease risk. Pediatric Research, 77(1-2), 196–204. doi:10.1038/pr.2014.169

Harms, H.-K.; Bertele-Harms, R.-M.; Bruer-Kleis, D. Enzyme-Substitution Therapy with the Yeast Saccharomyces cerevisiae in Congenital Sucrase-Isomaltase Deficiency. N. Engl. J. Med. 1987, 316, 1306–1309. [CrossRef]

Hendrayati, T.I., 2012. Perubahan Morfologi Escherichia coli Akibat Paparan Ekstrak Etanol Biji Kakao (Theobroma Cacao) Secara In Vitro. Skripsi. Fakultas Kedokteran Universitas Jember

Hennequin, C.; Thierry, A.; Richard, G.F.; Lecointre, G.; Nguyen, H.V.; Gaillardin, C.; Dujon, B. Microsatellite Typing as a New Tool for Identification of Saccharomyces cerevisiae Strains. J. Clin. Microbiol. 2001, 39, 551–559. [CrossRef] [PubMed]

Hill G.B., Eschenbach D.A., Holmes K.K. 1984. Bacteriology of the vagina. Scand. J. Urol. Nephrol. Suppl. 86:23–39.

Holzapfel, W.H.; Haberer, P.; Snel, J.; Schillinger, U.; Huis In’T Veld, J.H.J. Overview of gut flora and probiotics. Int. J. Food Microbiol. 1998, 41, 85–101. [CrossRef]

Hosseini, E., Grootaert, C., Verstraete, W., & Van de Wiele, T. (2011). Propionate as a health-promoting microbial metabolite in the human gut. Nutrition Reviews, 69(5), 245–258. doi:10.1111/j.1753-4887.2011.00388.x

Jahn, H.U.; Ullrich, R.; Schneider, T.; Liehr, R.M.; Schieferdecker, H.L.; Holst, H.; Zeitz, M. Immunological and trophical effects of Saccharomyces boulardii on the small intestine in healthy human volunteers. Digestion 1996, 57, 95–104. [CrossRef]

Jawetz, E., Melnick, J.L. & Adelberg, E.A., 2005, Mikrobiologi Kedokteran, diterjemahkan oleh Mudihardi, E., Kuntaman, Wasito, E. B., Mertaniasih, N. M., Harsono, S., Alimsardjono, L., Edisi XXII, 327-335, 362-363, Penerbit Salemba Medika, Jakart Elfidasari et all., 2011

Jawetz, Melnick & Adelberg. (2008). Medical Microbiology 24th. The McGraw-Hill Companies Inc. Hemeg, H.A. (2018). Molecular characterization of antibiotic-resistant Escherichia coli isolates recovered from food samples and outpatient Clinics, KSA. Saudi Journal of Biological Science, 25(1), 928- 931. (Hasibuan, 2016).

Krishan P, Kumar R, Kumar R. 2011. Effect of Lactobacillus rhamnosus on anthropometric parameters in obese hyperlipidemic patients. International Journal of Pharma Recent Research 3(1): 44-50.

Liu, H.; Styles, C.A.; Fink, G.R. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 1996, 144, 967–978. [PubMed]

Liu, J.J.; Zhang, G.C.; Kong, I.I.; Yun, E.J.; Zheng, J.Q.; Kweon, D.H.; Jin, Y.S. A mutation in PGM2 causing inefficient galactose metabolism in the probiotic yeast Saccharomyces boulardii. Appl. Environ. Microbiol. 2018, 84, e02858-17. [CrossRef]

Liu, Y.W.; Su, Y.W.; Ong, W.K.; Cheng, T.H.; Tsai, Y.C. 2011. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via anti-inflammatory and immunomodulatory activities. Int. Immunopharmacol. 11, 2159–2166.

Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012, 95, 50–60. [CrossRef]

Mackie, R. I., Sghir, A. & Gaskins, H. R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69, 1035S–1045S (1999). (Damayanti, 2014)

Martins, F.S.; Dalmasso, G.; Arantes, R.M.E.; Doye, A.; Lemichez, E.; Lagadec, P.; Imbert, V.; Peyron, J.F.; Rampal, P.; Nicoli, J.R.; et al. Interaction of Saccharomyces boulardii with Salmonella enterica serovar typhimurium protects mice and modifies T84 cell response to the infection. PLoS ONE 2010, 5, e8925. [CrossRef]

Martinsen, T.C.; Bergh, K.; Waldum, H.L. Gastric Juice: A Barrier Against Infectious Diseases. Basic Clin. Pharmacol. Toxicol. 2005, 96, 94–102. [CrossRef] [PubMed]

Matsuzaki T, NagataY, Kado S, Uchida K, Hashimoto S, Yokokura T. 1997. Effect of oral administration of Lactobacillus

casei on alloxan-induced diabetes in mice. Acta. Pathol. Microbiol. Immunol. Scand 105: 637-42.

McFarland, L.V. Common Organisms and Probiotics: Saccharomyces boulardii. In The Microbiota in Gastrointestinal Pathophysiology; Academic Press: Cambridge, MA, USA, 2017; pp. 145–164.

McFarland, L.V. Saccharomyces boulardii Is Not Saccharomyces cerevisiae. Clin. Infect. Dis. 1996, 22, 200–201. [CrossRef]

McFarland, L.V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol. 2010, 16, 2202–2222. [CrossRef]

Mitterdorfer, G.; Mayer, H.K.; Kneifel, W.; Viernstein, H. Clustering of Saccharomyces boulardii strains within the species

S. cerevisiae using molecular typing techniques. J. Appl. Microbiol. 2002, 93, 521–530. [CrossRef]

Moradi, R.; Nosrati, R.; Zare, H.; Tahmasebi, T.; Saderi, H.; Owlia, P. Screening, and characterization of in-vitro probiotic criteria of saccharomyces and kluyveromyces strains. Iran. J. Microbiol. 2018, 10, 123–131. [PubMed]

Moré, M.I.; Vandenplas, Y. Saccharomyces boulardii CNCM I-745 Improves Intestinal Enzyme Function: A Trophic Effects Review. Clin. Med. Insights Gastroenterol. 2018, 11, 1179552217752679. [CrossRef] [PubMed]

Nielsen, D.S.; Cho, G.S.; Hanak, A.; Huch, M.; Franz, C.M.A.P.; Arneborg, N. The effect of bacteriocin-producing Lactobacillus Plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytogenes single cells. Int. J. Food Microbiol. 2010, 141, S53–S59. [CrossRef] [PubMed]

Ningrum, H.P. Yeni, L.F. & Ariyati, E., 2012. Uji Daya Antibakteri Ekstrak Sawo Manila Terhadap E.coli dan Implemantasinya dalam Pembelajaran Peranan Bakteri. FKIP Untan. Pp1-17.

Nishiyama, K.; Sugiyama, M.; Mukai, T. 2016. Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms 4, 34.

Reuter G. 2001. The Lactobacillus and Bifidobacterium microflora of the human intestine: Composition and succession. Curr. Issues. Intest. Microbiol. 2:43–53.

Rossi F., Amadoro C., & Colavita G. (2019). Members of the Lactobacillus Genus Complex (LGC) as Opportunistic Pathogens: A Review. Microorganisms, 7(5), 126.

Rossi, M., Martínez-Martínez, D., Amaretti, A., Ulrici, A., Raimondi, S., & Moya, A. (2016). Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota. Environmental Microbiology Reports, 8(3), 399–406.

Roos, S. (2005). Lactobacillus gastric sp. nov., Lactobacillus antri sp. nov., Lactobacillus kalixensis sp. nov., and Lactobacillus ultunensis sp. nov., isolated from human stomach mucosa. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 55(1), 77–82.

Salonen, A., Lahti, L., Salojarvi, J., Holtrop, G., Korpela, K., Duncan, S. H., et al. (2014). Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8, 2218–2230. DOI: 10.1038/ismej.2014.63

Schrezenmeir, J.; de Vrese, M. Probiotics, prebiotics, and synbiotics—approaching a definition. Am. J. Clin. Nutr. 2001, 73, 361s–364s. [CrossRef] [PubMed]

Schneider, S.M.; Girard-Pipau, F.; Filippi, J.; Hébuterne, X.; Moyse, D.; Hinojosa, G.C.; Pompei, A.; Rampal, P. Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition. World J. Gastroenterol. 2005, 11, 6165–6169. [CrossRef]

Sen, S.; Mansell, T.J. Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genet. Biol. 2020, 137, 103333. [CrossRef]

Sun, Y.; Rajput, I.R.; Arain, M.A.; Li, Y.; Baloch, D.M. Oral administration of Saccharomyces boulardii alters duodenal morphology, enzymatic activity, and cytokine production response in broiler chickens. Anim. Sci. J. 2017, 88, 1204–1211. [CrossRef] [PubMed]

Sweeney, D.A.; Hicks, C.W.; Cui, X.; Li, Y.; Eichacker, P.Q. Anthrax infection. Am. J. Respir. Crit. Care Med. 2011, 184, 1333–1341. [CrossRef]

Kabluchko, T.V.; Bomko, T.V.; Nosalskaya, T.N.; Martynov, A.V.; Osolodchenko, T.P. In the gastrointestinal tract exist the protective mechanisms which prevent overgrowth of pathogenic bacterial and its incorporation. Ann. Mechnikov Inst. 2017, 1, 28–33.

Kalliomaki M, Maria CC, Sippo S, Erika Isolauri. 2008. Early differences in fecal microbiota composition in children may predict overweight, American Journal of Clinical Nutrition. 87 (3): 534- 38.

Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49(3), 209–224.

Kaur, I.P.; Kuhad, A.; Garg, A.; Chopra, K. Probiotics: Delineation of Prophylactic and Therapeutic Benefits. J. Med. Food 2009, 12, 219–235. [CrossRef]

Kelesidis, T.; Pothoulakis, C. Efficacy, and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap. Adv. Gastroenterol. 2012, 5, 111–125. [CrossRef] [PubMed]

Kelly SM, Lanigan N, O’Neill IJ, Bottacini F, Lugli GA, Viappiani A, et al. Bifidobacterial biofilm formation is a multifactorial adaptive phenomenon in response to bile exposure. Sci Rep 2020;10(1). 68179-9.

Khatri, I.; Akhtar, A.; Kaur, K.; Tomar, R.; Prasad, G.S. Gleaning evolutionary insights from the genome sequence of a probiotic yeast Saccharomyces boulardii. Gut Pathog. 2013, 5, 30. [CrossRef] [PubMed]

Khatri, I.; Tomar, R.; Ganesan, K.; Prasad, G.S.; Subramanian, S. Complete genome sequence and comparative genomics of the probiotic yeast Saccharomyces boulardii. Sci. Rep. 2017, 7, 1–13. [CrossRef]

Kim, P. (2004). Current studies on biological tagatose production using L-arabinose isomerase: a review and future perspective. Applied Microbiology and Biotechnology, 65(3).

KLAVER, F. A., VAN DER MEER, R. (1993) The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 59, 1120.

Klein, S.M.; Elmer, G.W.; McFarland, L.V.; Surawicz, C.M.; Levy, R.H. Recovery and Elimination of the Biotherapeutic Agent, Saccharomyces boulardii, in Healthy Human Volunteers. Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 1993, 10, 1615–1619.

Kyne, L.; Warny, M.; Qamar, A.; Kelly, C.P. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhea. Lancet 2001, 357, 189–193. [CrossRef]

Oba M, Allen MS. Intraruminal infusion of propionate alters feeding behavior and decreases energy intake of lactating dairy cows. Paper presented at Annual Meeting of the American-Dairy-Science-Association; Indianapolis, Indiana; Jul 2001.

Offer, B.; Vandecruys, P.; De Graeve, S.; Foulquié-moreno, M.R.; Thevelein, J.M. Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Genome Res. 2019, 1478–1494. [CrossRef] [PubMed]

Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019, 10, S49– S66. [CrossRef]

Pontier-bres, R.; Munro, P.; Boyer, L.; Anty, R.; Rampal, P.; Lemichez, E. Saccharomyces boulardii Modifies Salmonella Typhimurium Traffic and Host Immune Responses along the Intestinal Tract. PLoS ONE 2014, 9, e103069. [CrossRef] [PubMed]

Pontier-bres, R.; Rampal, P.; Peyron, J.; Munro, P.; Lemichez, E.; Czerucka, D. The Saccharomyces boulardii CNCM I- 745 Strain Shows Protective Effects against the B. anthracis LT Toxin. Toxin 2015, 7, 4455–4467. [CrossRef]

Qamar, A.; Aboudola, S.; Warny, M.; Michetti, P.; Kelly, N.P.; Division, G.; Israel, B.; Medical, D. Saccharomyces boulardii Stimulates Intestinal Immunoglobulin A Immune Response to Clostridium difficile Toxin A in Mice. Infect. Immun. 2001, 69, 2762–2765. [CrossRef] [PubMed]

Rajput, I.R.; Hussain, A.; Li, Y.L.; Zhang, X.; Xu, X.; Long, M.Y.; You, D.Y.; Li, W.F. Saccharomyces boulardii and Bacillus subtilis B10 Modulate TLRs Mediated Signaling to Induce Immunity by Chicken BMDCs. J. Cell. Biochem. 2014, 115, 189–198. [CrossRef]

Rivera-Chávez, F.; Lopez, C.A.; Bäumler, A.J. Oxygen as a driver of gut dysbiosis. Free Radic. Biol. Med. 2017, 105, 93–

101. [CrossRef] [PubMed]

Robert Wayne Hutkins (2006). Microbiology and Technology of Fermented Foods. Wiley-Blackwell. ISBN 978-0-8138- 0018-9.Page.37-39

Rodrigues, A.C.P.; Mardi, R.M.; Bambirra, E.A.; Vieira, E.G.; Nicoli, U.R. Effect of Saccharomyces boulardii against experimental oral infection with Salmonella typhimurium and Shigella flexnerim conventional and gnotobiotic mice. J. Appl. Bacteriol. 1996, 81, 251–256. [CrossRef]

Ruijschop R, Boelrijk AEM, Giffel MCT. Satiety effects of a dairy beverage fermented with propionic acid bacteria. Int Dairy J. 2008;18:945–950.

Todar, K. G. 2020. Todar's Online Textbook of Bacteriology.

Trovatelli LD, Crociani F, Pedinotti M, Scardovi V. Bifidobacterium pullorum sp. nov.: a new species isolated from chicken feces and a related group of bifidobacteria isolated from rabbit feces. Arch Microbiol 1974;98(1):187–98.

Turroni F, Milani C, Duranti S, Ferrario C, Lugli GA, Mancabelli L, et al. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci 2018;75(1):103–18. s00018-017-2672-0.

Vacca, I. Microbiome: The microbiota maintains oxygen balance in the gut. Nat. Rev. Microbiol. 2017, 15, 574. [CrossRef] [PubMed]

Van den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013;54(9):2325–40.

Van den Brink, J.; Akeroyd, M.; van der Hoeven, R.; Ponk, J.T.; de Winde, J.H.; Daran-Lapujade, P.A.S. Energetic limits to metabolic flexibility: Responses of Saccharomyces cerevisiae to glucose-galactose transitions. Microbiology 2009, 155, 1340–1350. [CrossRef] [PubMed]

Van der Aa Kühle, A.; Jespersen, L. The Taxonomic Position of Saccharomyces boulardii as Evaluated by Sequence Analysis of the D1/D2 Domain of 26S rDNA, the ITS1-5.8S rDNA-ITS2 Region, and the Mitochondrial Cytochrome-c Oxidase II Gene. Syst. Appl. Microbiol. 2003, 26, 564–571. [CrossRef]

Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. 2017. Antioxidant properties of probiotic bacteria. Nutrients 9, 521.

Wu, X.; Vallance, B.A.; Boyer, L.; Bergstrom, K.S.B.; Walker, J.; Madsen, K.; O’Kusky, J.R.; Buchan, A.M.; Jacobson,

K. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 294, G295–G306. [CrossRef] [PubMed]

Xiong YM, Miyamoto N, Shibata K, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A. 2004;101:1045–1050.

Zaouche, A.; Loukil, C.; De Lagausie, P.; Peuchmaur, M.; Macry, J.; Fitoussi, F.; Bernasconi, P.; Bingen, E.; Cezard, J.P. Effects of oral Saccharomyces boulardii on bacterial overgrowth, translocation, and intestinal adaptation after small-bowel resection in rats. Scand. J. Gastroenterol. 2000, 35, 160–165. [CrossRef]

Zhou J, Martin RJ, Tulley RT, et al. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab. 2008;295:1160–116


  • There are currently no refbacks.

Office Address:
Faculty of Military Mathematics and Natural Sciences
Republic of Indonesia Defense University
Indonesian Peace and Security Center Complex, Sentul, Bogor 16810, Indonesia
Email: | WhatsApp: +6285742313964

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Munisi: Military Mathematics and Natural Sciences View