
MUNISI: Military Mathematics and Natural Sciences 

 

62 
 
 

e-ISSN: 3026-2968 
Vol. 3, No. 2, December 2025, pp. 62-78 
Available online at https://jurnal.idu.ac.id/index.php/munisi 

 
Modeling Sunspot Activity Variability and Autoregulation in the Period 2000-

2018 with Advanced Statistical Approach      

Ruben Cornelius Siagian 1,* 
1Universitas Negeri Medan, Medan, Indonesia  
 
 
* Corresponding Author: rubensiagian_17@mhs.unimed.ac.id  

 

Abstract 

This study analyzes sunspot activity data from 2000 to 2018 to identify patterns and factors 
influencing fluctuations in solar activity, which has implications for space weather and 
global climate. The study focuses on parameters such as mu, omega, α1 (autoregressive), 
and β1 (moving average), hypothesizing that sunspot activity exhibits significant variability 
and can be predicted using modified ARMA models. The research employs statistical 
analysis of ARMA model parameters, including significance tests, serial correlation, and 
heteroscedasticity analysis, along with stability tests (Nyblom) and sign bias evaluation. 
Results show that mu and omega parameters significantly influence sunspot activity, with 
high t-statistics. The autoregressive coefficient α1 strongly predicts future activity, while β1 
(moving average) has minimal impact. Findings confirm that sunspot activity is volatile, 
dependent on past values, and exhibits serial correlation and heteroscedastic volatility. The 
study underscores the need for more advanced models, such as ARIMA or AI-based 
approaches, to improve predictive accuracy. Autoregressive modeling proved effective, 
while moving averages showed limited contribution.  

Keywords: Autoregressive Model; Solar Variability; Space Weather Prediction; Sunspot 
Activity; Time Series Analysis 

 
Introduction 

Sunspot activity is a phenomenon that occurs on the surface of the Sun 

characterized by the appearance of dark spots called sunspots [1,2]. The dots are 

formed by very high magnetic activity in the Sun's atmospheric layers [20]. Sunspots 

are an indication of fluctuations in the Sun's activity, which is directly related to the 

solar cycle, which lasts about 11 years [13]. The magnetic activity recorded in sunspots 

affects the Sun's surface conditions, and has a significant impact on a wide range of 

phenomena occurring on Earth, including space weather, global climate, and even the 

technology we use daily, such as satellite communication systems and GPS navigation 

[8]. Understanding sunspot behavior lies in observing physical phenomena on the 

Sun, and also in their potential impact on Earth's weather systems and atmosphere 

[21]. Increased solar activity, reflected in an increasing number of sunspots, can affect 

the solar radiation reaching Earth, causing global temperature changes or even 

disruptions to satellite systems that function outside of Earth's atmosphere [4]. 

Research on sunspot dynamics, especially in terms of patterns and changes in a 

certain period of time, is very relevant, both for scientific research, the development 
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of space weather prediction models, and in order to mitigate the impacts that may 

arise on Earth. The statistical approach used includes testing the significance of 

parameters by analyzing the mean value, variability, and relationship between 

parameters that affect the pattern of sunspot activity. Using parameter estimation 

methods and statistical tests such as t-tests, significance tests, and autoregressive 

models, the research seeks to provide a clearer picture of the factors that affect 

sunspot activity in a predetermined time period. 

The research identifies how much influence each parameter - mu, omega, 

alpha1, and beta1 - has on the fluctuations and variations in sunspot activity. The 

research focuses on statistical analysis to assess the strength of the relationship 

between these parameters and the observed sunspot activity in the specified period. 

The research identifies patterns of trends and fluctuations in sunspot activity over the 

period 2000 to 2018. The trends will be analyzed to determine if there are patterns 

that can be used to predict future levels of sunspot activity, making it possible to 

forecast related phenomena such as space weather. The problem focuses on testing 

the stability of the sunspot activity data and finding serial correlation patterns in the 

data. The research determines whether sunspot activity exhibits recurring patterns or 

long-term trends that can be identified using appropriate statistical analysis 

techniques. Research seeks to correlate sunspot activity with other natural 

phenomena, such as climate change and space weather. Research focuses on 

analyzing the long-term impact of sunspot activity on global climate stability and its 

effect on technological systems that depend on space weather conditions. 

The hypotheses in this study focus on the characteristics and patterns of sunspot 

activity over the period 2000 to 2018, as reflected by the significant estimated 

parameters and relationships between the variables. Based on the analysis, the main 

hypothesis is that sunspot activity has a significant trend over the period, with 

variability influenced by certain factors that can be predicted based on historical data 

[13]. Specifically, it is hypothesized that the parameters mu (mean sunspot activity) 

and omega (variability of sunspot activity) show a significant relationship with 

fluctuations in solar activity during the analysis period, and can be used to predict 

future sunspot activity [7]. It is hypothesized that the effect of autoregression 

(parameter α1) on sunspot activity will be highly significant, which means that 

sunspot activity in the previous period has a strong influence on the prediction of 

sunspot activity in the next period [12]. In contrast, it is expected that the first 

moving average coefficient (β1) does not show a significant effect on the model, as the 

very low t-statistic value indicates the parameter does not contribute substantially in 

explaining the variability of sunspot activity. It is hypothesized that there is a 

significant serial correlation pattern in the sunspot data, indicating a relationship 

between sunspot activity in different periods [14]. The hypotheses are tested through 

statistical testing at various lags, which is expected to show consistent temporal 

patterns in the data. It is expected that the results of the heteroscedasticity test using 

the ARCH test will indicate the presence of volatility in sunspot activity at certain 

lags, indicating fluctuations in solar activity that may affect future forecasts [22, 23]. 

It is hypothesized that the model used in the study, based on Akaike (AIC) and 
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Bayesian (BIC) information criteria, provides an accurate description of the dynamics 

of sunspot activity, and can explain the observed variations in the data well [18]. 

The study aims to explore the factors affecting sunspot activity in the period 

2000 to 2018 through the analysis of parameters such as mu, omega, alpha1, and 

beta1. Assess the significance of the parameters affecting sunspot activity, including 

mu, omega, alpha1, and beta1. This aims to determine which factors have the most 

influence on changes in sunspot activity within the analyzed period. Identify trends 

and fluctuations in sunspot activity that can be used to predict future sunspot activity. 

The research aims to provide a clearer picture of the pattern and movement of 

sunspot activity throughout the year. Provide an analysis of the stability of the 

sunspot data, as well as identify any serial correlations in the data that show certain 

patterns. This is important to understand whether there are recurring patterns or 

significant changes that could affect the trend of sunspot activity. Develop a model 

that identifies the long-term influence of sunspot activity on other natural 

phenomena on Earth, such as global climate and space weather. This aims to 

understand the relationship between sunspot activity and its impact on systems on 

Earth, as well as the implications for technologies that rely on space weather. The 

main benefit of the research is to provide more accurate information related to 

predicting and understanding the sunspot phenomenon. With a better understanding 

of sunspot patterns, the research can support the development of early warning 

systems for space weather, which are essential for protecting satellites and other 

technological infrastructure. The knowledge gained from this research is also 

expected to be used for climate prediction, as the Sun's activity affects global 

temperatures and long-term climate change. 

The study was limited to sunspot data recorded between 2000 and 2018. The 

analysis involved only four main parameters (mu, omega, alpha1, beta1) and 

associated statistical tests. This study does not address the influence of other external 

factors such as global climate change or solar activity outside the specified time 

period. 

Research can make a major contribution to the development of better predictive 

models for monitoring solar activity, especially in predicting the periods of sunspot 

maximum and minimum. Better knowledge of the nature of sunspot fluctuations can 

help meteorological and astronomical agencies prepare for and respond to the impact 

of variations in solar activity on Earth. There are few studies that examine sunspot 

dynamics thoroughly with statistical models that can handle the complexity of data 

over long periods. Previous studies have generally focused on analyzing sunspot data 

over shorter periods of time or using models that do not take into account serial 

correlations in the data.  

This research fills the gap by offering a more accurate and detailed model to 

explain sunspot fluctuations based on in-depth statistical and relevant parameter 

analysis. The statistical modeling used in this analysis considers a more 

comprehensive range of approaches, such as the analysis of a series of autoregressive 

and moving average coefficients to predict future sunspot activity. The research 
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identified the significance of several parameters, such as mu, omega, alpha1, and 

beta1, which were previously under-explored in sunspot-related studies. Findings 

regarding the sign bias pattern that shows a tendency for more sunspots with 

negative and positive polarities. 

 

Materials and Methods    

The sunspot data used in this study were obtained from the Solar Data Analysis 

Center (SDAC) archive managed by NASA [3]. SDAC is a reliable source of data about 

the sun and its activity, and is one of the main sources for researchers to understand 

changes in solar activity [17]. SDAC provides access to a wide range of solar data that 

includes observations of sunspots, solar irradiance, flare activity, and other solar 

parameters [16]. Data is collected from various instruments and satellites that 

observe the sun continuously, allowing researchers to analyze and understand the 

sun's behavior over long periods of time [6]. Solar data from SDAC is important in 

many scientific studies, including the understanding of the sunspot cycle, the sun's 

influence on space weather, and its impact on Earth. The data is used in predicting 

space weather and its impact on satellites and communication systems on Earth. 

SDAC and the solar data it provides are a critical component of scientific and 

operational research related to the sun and its impact on Earth and the technologies 

within it. Access to solar data from SDAC is from the official NASA Solar Data 

Analysis Center website. There are data sets, analysis software and other resources 

that can help in the research and understanding of solar activity [5]. Sunspot Heat 

Map and Sunspot Trends Over the Years, which is a representation of the sunspot 

cycle, as seen in figure 1. 
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Figure 1. Heatmap, Annual Sunspot Trends, and Kernel-Distribution and Box Plot of 

Sunspot Activity 2000-2018 

The mean value of the number of sunspots data is about 68.45. The median of 

the number of sunspots data is 52. The standard deviation of the number of sunspots 

data is about 64.33. The minimum value in this data set is 0. The maximum value in 

this data set is 353. The box on the box chart includes the Interquartile Range (IQR), 

which is the range between the 1st quartile and the 3rd quartile. The center line on 

the box is the median of the data. The “whiskers” (horizontal lines above and below 

the box) depict the more extreme ranges of the data, as long as they are not 

considered outliers. In the box diagram, the median is 52.00 sunspots, half of the 

observations have a lower number of sunspots than this, and half have a higher 

number of sunspots. The data distribution is skewed to the right as the mean value 

(68.45) is higher than the median (52.00). The third quartile (3rd Quartile) is at 

109.00 sunspots, the top 25% of the data has a relatively high number of sunspots. 

There are some outliers located above the upper whisker line. 
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The GARCH model is a useful statistical tool for measuring volatility in financial 

data and many other types of data, including daily sunspot data [22, 23]. A model for 

understanding volatility fluctuations in data over time by considering the impact of 

prior values and residual variance. The main variables in the GARCH model are the 

daily sunspot data at time t and the average sunspot data [10]. The residual at time t 

is the difference between the observed data at time t and its mean at that time. The 

square root of the variance of the residual at time t is the standard deviation of the 

residual at time t. Normally distributed random noise with mean 0 and variance 1 is a 

random component that has no particular structure and describes the noise in the 

data. 

 The number of lags in the autoregression component (p) is the number of 

autoregression lags used in the model [9]. Autoregression lags measure the impact of 

previous values on current variability. The number of lags in the moving average 

component (q) is the number of moving average lags used in the model  [19]. Moving 

average lags measure the impact of previous residual variability on current 

variability: 

t ty  = +  (1) 

Residual Equation: 

t t tz =   (2) 

Residual Variance Equation (GARCH Model) (Almısshal & Emir, 2021): 
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  is the contribution of the moving average lag to the variance at time t. It 

measures how the influence of the previous lag moving average affects the current 
variability. 

One commonly used method is the Maximum Likelihood Estimation (MLE) 

Method, which searches for parameter values that are most likely to yield the 

observed data [11]. After estimating these parameters, GARCH model to analyze the 

volatility in the daily sunspot data and even perform future volatility forecasting [15].  
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Figure 2. Sunspot Activity Volatility Algorithm Using GARCH(1,1) Model 

This program focuses on analyzing sunspot data and simulating volatility using 

the GARCH(1,1) model. The programming algorithm can be seen in Figure 2. The 

algorithm starts by defining two vectors: `Number_of_Sunspots`, which contains 

data on the number of sunspots, and `No`, which contains data related to the 

number or category of observation dates or periods. Both data must have the same 

length to ensure alignment between the sunspot count data and the data. The first 

step is to check if the length of both data is the same. If not, an error message is given 

and the algorithm execution is stopped. After data validation is complete, calculate 

the log returns of the sunspot count data. Log returns are calculated using the 

logarithmic difference between consecutive sunspot count values. The results of the 

calculation will give an idea of the percentage change of the sunspot number between 

periods. Define the initial parameters for the GARCH(1,1) model. The model is used 

to estimate the volatility of financial variables that change over time, and here the 

sunspot data is applied. The variable `omega` is calculated based on the variance of 

the log returns and an adjustment based on data length and other parameters. Using 

the calculated log returns, calculate the two parameters of the GARCH model: 

`alpha` and `beta`. `alpha` as the sum of squared log returns truncated by a certain 

data length (`m-p`). `beta` is calculated using the value of log returns multiplied by 

one time period. Both parameters will provide information on how past volatility 

affects future volatility estimates. All these parameters, namely `omega`, `alpha`, 

and `beta`, are then stored in a model list. Volatility simulations are conducted using 

the GARCH(1,1) model. The first initialization of the simulated volatility 

(`simulated_volatility[1]`) is done with the variance of the log returns. Then, for each 

subsequent simulation, volatility is calculated using the GARCH formula, where 

volatility in the previous time period, squared log returns, and model parameters 

(`omega`, `alpha`, and `beta`). 

To calculate the model information metrics, several functions are defined that 

calculate the AIC, BIC, SIC, and HQIC values, which are used to evaluate the 

statistical model quality. The first step is to define the `calculate_AIC` function that 

calculates the AIC (Akaike Information Criterion) value of a model. The function 

utilizes the `AIC` function already available in the R environment to calculate the 

value from the given model. After that, it will return the AIC value. The second step is 

to define the `calculate_BIC` function, which calculates the BIC (Bayesian 

Information Criterion) value. Here, the existing `BIC` function in R is used to 
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calculate the BIC of the model, and then returns the value. The next function, 

`calculate_SIC` (Schwarz Information Criterion), can be calculated using a formula 

involving the log likelihood of the model, the number of observations (n), and the 

degrees of freedom (df) of the model. First, the log likelihood is obtained using the 

`loglik` function, the number of observations using `nobs`, and the degrees of 

freedom of the model using `df`. With this information, we can calculate the SIC with 

the formula: 

2 loglik log( ) dfSIC n= −  +   (4) 

 

The function then returns the calculated SIC value. Next, define the 

`calculate_HQIC` (Hannan-Quinn Information Criterion) function, which utilizes 

the log likelihood, number of observations, and degrees of freedom. However, HQIC 

is calculated using a slightly different formula, which is: 

 2 loglik 2 log log( )HQIC n= −  +   (5) 

 

The function then returns the HQIC value. After defining the functions to 

calculate the various information metrics, perform the `print_metrics` function 

which will display the calculated AIC, BIC, SIC, and HQIC results of the given model. 

The function first displays the model label, then calculates and prints each of the 

previously defined information metrics. All information is for comparing the quality 

of the tested models. Furthermore, several models can be defined for analysis. The 

first model is the basic linear model, represented by `model <- lm(y ~ x, data = 

your_data)`, where `y` is the dependent variable and `x` is the independent 

variable. The first alternative model (`model_alternative_1`) uses a degree 2 

polynomial of `x`, defined as `model_alternative_1 <- lm(y ~ poly(x, 2), data = 

your_data)`. The second alternative model (`model_alternative_2`) uses a 3rd 

degree polynomial of `x`, defined as `model_alternative_2 <- lm(y ~ poly(x, 3), data 

= your_data)`. The function `print_metrics` displays the metrics of the three models 

defined. Each model will be analyzed, and its AIC, BIC, SIC, and HQIC will be 

displayed to help evaluate which model is the best based on the information metrics. 
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Figure 3. Programming algorithm using R-Studio for Model Evaluation Metrics 

Shown in Figure 4 is the function algorithm for calculating the weighted Ljung-

Box statistic to test for autocorrelation in the model residuals. The algorithm starts by 

defining a function `weighted_1jung_box` that accepts two arguments: residuals 

(regression model residuals) and `lag.max`, which specifies how many lags to use in 

the autocorrelation calculation. The first step is to calculate the length of the 

residuals, which is expressed by the variable `n`. The `acf` function is used to 

calculate the autocorrelation value at each lag up to the maximum value (`lag.max`), 

the result of which is stored in the `acf_vals` variable. This autocorrelation will be 

used to calculate the weighted Ljung-Box statistic. The value of the 

`weighted_1jung_box` statistic is calculated with a formula involving the sum of the 

squares of the autocorrelations, divided by the correction for degrees of freedom. The 

result is the weighted Ljung-Box statistic that will be used to test for the presence of 

autocorrelation in the residual data. There is a function 

`P_value_weighted_1jung_box` that calculates a p value based on the previously 

calculated weighted Ljung-Box statistic, using the chi-squared distribution. This p-

value is used to test the null hypothesis that there is no autocorrelation in the data. To 

analyze the sunspot data, the dataset was read using the `read_excel` function of the 

`readxl` library, and relevant columns were retrieved, such as the number of 

sunspots (`Number_of_Sunspots`), as well as information about the year, month, 

and day. A regression model is created to predict the number of sunspots based on 

these variables. The residuals of this model are calculated, which are then used in the 

`weighted_1jung_box` function to calculate the weighted Ljung-Box statistic. The 

result of the statistic calculation is compared with the p value calculated from the 

`P_value_weighted_1jung_box` function. If the p value is smaller than the specified 

significance level (e.g., 0.05), the null hypothesis will be rejected, meaning there is 

evidence of autocorrelation in the residuals. Conversely, if the p value is greater than 

0.05, then there is not enough evidence to reject the null hypothesis, indicating that 

there is no significant autocorrelation in the data. 
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Figure 4. Programming algorithm using R-Studio for Weighted Ljung-Box statistical 

test on standardized residuals of linear regression models 

 

Results and Discussion 
In the study, Table 1 is the optimal parameters that are important for 

understanding the characteristics of sunspots during this time period were identified. 

The mu parameter was analyzed with an estimated value of about 18.98 and a standard 

error of about 0.57. A high t-statistic value of about 33.50 indicates that the mu value is 

highly statistically significant. The mean value of sunspot data in the period is 

significantly different from zero (in this case, zero is the value tested for differences). 

The omega parameter has an estimated value of about 85.90 with a standard error of 

about 5.41. A high t-statistic value of about 15.88 indicates that the omega value is 

statistically significant. The parameter has a significant effect on the sunspot 

phenomenon during the period studied. The alpha1 parameter has an estimated value 

of about 0.98 and a standard error of about 0.03. A t-statistic value of about 31.00 

indicates that alpha1 is also statistically significant. The parameter has a significant 

impact on the sunspot phenomenon. Beta1, has a very small estimated value of around 

0.000004, with a standard error of around 0.0238. The very low t-statistic value of 

around 0.000156 indicates that beta1 is not statistically significant in this analysis. 
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Table 1. Parameter Estimation with Standard Error and t-Statistic Values 

Parameter Estimated Value Standard Error Value of t-Statistic 

Mu 18.98 0.57 33.5 

Omega 85.9 5.41 15.88 

α1 0.98 0.03 31 

β1 0.000004 0.0238 0.00016 

 

The average estimate of sunspot activity is 18.98 with a standard error of about 

3.82. Sunspot activity tends to be high and significantly different from zero. This 

indicates that sunspot activity has a certain trend that needs to be considered in the 

analysis. The results estimate the variability of sunspot activity with a value of 85.90. 

The standard error is 12.80, and the t-statistic is high with a very low p-value, the 

variability is also significant. This implies that sunspot activity varies significantly 

over time. The estimate of the first autoregression coefficient α1 is about 0.98 with a 

standard error of about 0.03. The high t-statistic and very low p-value indicate that 

sunspot activity in the past has a strong influence in predicting current activity. There 

is a relationship between sunspot data in the previous period and the current period. 

The first moving average coefficient β1 is very small, about 0.000004, with a standard 

error of about 0.028. Low t-statistic and high p-value, the coefficient is not significant 

and has no effect on the model. The coefficient can be ignored in the analysis. The 

high log-likelihood result, around -35068.11, the model fits the observed data. The 

model used is able to explain the variation in sunspot data well. The study shows that 

the average level and variability of sunspot activity are significant, the first 

autoregression coefficient α1 has a strong influence in predicting future sunspot 

activity. The first moving average coefficient β1 does not have a significant effect on 

the model. The high log-likelihood result indicates that the model fits the observed 

data well. 

Table 2. Estimation, Standard Error, and Statistical Significance 
Variabel Estimation Standard 

Error 
T-

Statistic 
P-Value 

Average Sunspot Activity 18.9826 3.819999 4.969278 0.000001 
Sunspot Activity 
Variability 

85.9028 12.80432 6.708887 0 

Autoregressive 
Coefficient (α1) 

0.98475 0.032366 30.42502 0 

Moving Average 
Coefficient (β1) 

4E-06 0.028009 0.000132 0.999895 

Log-Likelihood Model -35068.1 

Table 2 shows the results of the analysis that reveal the Akaike criterion has a 

value of 10.107, Bayes has a value of 10.111. The model using the Akaike criterion has 
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a slightly better level of information than the model with the Bayes criterion. The 

difference is small, the model that meets the Akaike criterion is more relevant in the 

analysis of sunspot activity. The Shibata criterion value is 10.107, similar to the 

Akaike value. The use of the Shibata method is comparable to the Akaike method in 

measuring model quality in sunspot analysis. The results provide additional support 

for the suitability of the Akaike method. The Hannan-Quinn value is 10.109, which is 

between the Akaike, Bayes, and Shibata values. The value is higher than Akaike and 

Shibata. 

At Lag[1], the test statistic produces a value of 4502 with a p-value of 0. A low 

p-value indicates strong evidence to reject the null hypothesis (H0) which states that 

there is no serial correlation in the sunspot data. This means that there is a serial 

correlation in the first lag of the sunspot data. At Lag[2*(p+q)+(p+q)-1][2], the test 

statistic produces a value of 6359 with a p-value of 0. The results show strong 

evidence to reject H0 which means that there is a serial correlation in the second lag 

of the sunspot data. At Lag[4*(p+q)+(p+q)-1][5], the test statistic reaches 11237 with 

a p-value of 0. There is a serial correlation in the sunspot data at higher lags. 

Table 3. Significant Serial Correlation at Various Lags in the Data Test Statistic 
Lag Test Statistics P-Value Conclussion 

1 4502 0 Serial correlation significant at Lag 1 
2*(p+q)+(p+q)-1 6359 0 Serial correlation significant at Lag 2 
4*(p+q)+(p+q)-1 11237 0 Serial correlation is significant at higher lags 

The Weighted Ljung-Box Test Analysis on Standardized Square Residuals 

identifies whether there is a statistically significant pattern or association in this data. 

In the first lag, the statistic value is 15.34 with a p-value of approximately 8.974e-05. 

There is a significant correlation in the data in the first lag, indicating a pattern or 

relationship in the previous period. In the lag with the formula [2*(p+q)+(p+q)-1][5], 

the statistic value is 17.29 with a p-value of approximately 1.070e-04. There is a 

significant correlation in the data in this lag, which covers several previous periods. 

An interesting result is seen in the lag [4*(p+q)+(p+q)-1][9], where the statistic value 

reaches 18.63 with a p-value of approximately 4.508e-04. There is a significant 

correlation in the data in this lag, which covers more previous periods. Degree of 

freedom 2, indicating that there is a statistically significant correlation in sunspot 

data from 2000 to 2018. The results show that there is a pattern or correlation in the 

data that can be used for further analysis or prediction. 

Table 4. Comparison of Statistics and P-Value at First Lag and Additional Lag 
Lag First Lag Lag [2*(p+q)+(p+q)-1][5] Lag [4*(p+q)+(p+q)-1][9] 

Statistical Value 15.34 17.29 18.63 
P-Value 8.97E-05 1.07E-04 4.51E-04 
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Analysis using the Weighted ARCH LM test. The results of the analysis show 

that the ARCH Lag[3] test produces a statistic of 2.374 with a Shape value of 0.500 

and a Scale value of 2.000. The p-value found is around 0.1234. At lag [3], there is an 

indication of heteroscedasticity of volatility in sunspot activity data. The P-value is 

not too low, the statistics show certain patterns in the data that need to be considered. 

The ARCH Lag[5] test produces a statistic of 2.594 with a Shape value of 1.440 and a 

Scale value of 1.667. The related p-value is around 0.3544. Indicates the presence of 

heteroscedasticity of volatility at lag [5] with a higher P-value than at lag [3]. 

Although not as strong as at lag [3], it is still considered an important indication. The 

ARCH Lag[7] test produces a statistic of 3.037 with a Shape value of 2.315 and a Scale 

value of 1.543. The associated p-value is about 0.5067. At lag [7], there is stronger 

volatility heteroscedasticity than at lag [5], the P-value remains high.  

Table 5. Effect of Lag on Statistical Value and P-Value 

Lag ARCH Statistics Shape Scale P-value 

Lag 3 2.374 0.5 2 0.1234 
Lag 5 2.594 1.44 1.667 0.3544 
Lag 7 3.037 2.315 1.543 0.5067 

Evaluation of data stability in the range of 2000 to 2018 using the Nyblom 

stability test. The analysis of the Combined Statistic value obtained is 20.6839. The 

value is a composite measure that describes the stability of sunspot data during the 

period studied. The lower the Combined Statistic value, the more stable the data. The 

analysis reveals several individual statistics about the factors that affect the stability 

of sunspot data. Mu (μ) with a value of 10.8105, a constant associated with the 

estimation model used in the Nyblom stability test. A higher value of mu indicates 

potential instability in the data. Omega (ω) with a value of 0.4412 reflects other 

parameters in the model used for stability analysis, and a higher value of omega can 

also be an indication of instability. (α1) with a value of 2.6690 is one of the 

parameters in the autoregression model used in the Nyblom stability test, a high 

alpha1 value indicates significant fluctuations in the data. (β1) with a value of 1.9170 is 

another parameter in the autoregression model that can affect data stability, and a 

higher beta1 value can also indicate instability.  

Nyblom stability test analysis shows a Combined Statistic value of 20.6839. 

The lower the Combined Statistic value, the more stable the data in table 6. Individual 

statistics such as Mu (μ), Omega (ω), Alpha1 (α1), and Beta1 (β1) can affect the stability 

of sunspot data. A relatively low Mu value indicates a low level of instability in the 

estimated model. A relatively low Omega value indicates that other parameters in the 
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model do not contribute significantly to the instability of the data. High Alpha1 and 

Beta1 values indicate significant fluctuations in the sunspot data. 

Table 6. Statistical Tables for Variables: Joint Statistic, Mu (μ), Omega (ω), Alpha1 (α1), and 
Beta1 (β1) 

 
 
 

The results reveal the asymptotic critical value at the 10%, 5%, and 1% 

significance levels in table 7. In the study, two types of statistics were used, namely 

Combined Statistics and Individual Statistics. At the 10%, 5%, and 1% significance 

levels, the Combined Statistics values were 1.07, 1.24, and 1.6, respectively. Combined 

Statistics exceeded the asymptotic critical value at all tested significance levels. There 

is a statistically significant relationship between sunspots in the studied period when 

viewed together. 

Table 7. Evaluation of Combined Statistics and Individual Statistics at Different Significance 
Levels 

Type of 
Statistics 

Joint 
Statistic 

Joint 
Statistic 

Joint 
Statistic 

Individual 
Statistic 

Individual 
Statistic 

Individual 
Statistic 

Significance 
Level 

10% 5% 1% 10% 5% 1% 

Statistical 
Value 

1.07 1.24 1.6 0.35 0.47 0.75 

At the same level of significance, the Individual Statistic values are 0.35, 0.47, 

and 0.75. All Individual Statistic values are below the asymptotic critical value. Each 

sunspot variable individually does not have a statistically significant effect on the 

period studied. There is a statistically significant relationship between sunspots in the 

period 2000-2018 when viewed together (Joint Statistic). When analyzed 

individually (Individual Statistic), there is no statistically significant evidence for 

each sunspot variable. There is a statistically significant effect when sunspots are 

viewed as a whole in the period. 

The study used the Sign Bias test in table 8. The results showed that there was 

no significant sign bias in the sunspot data during the period (t-value = 0.4007, sig = 

0.6887). When the sign bias was divided into two categories, namely Negative Sign 

Bias and Positive Sign Bias, it was found that Negative Sign Bias (t-value = 6.0676, sig 

<0.001) represented a significant trend for more sunspots with negative polarity, 

while Positive Sign Bias (t-value = 3.4331, sig = 0.0006) showed a significant trend 

for more sunspots with positive polarity during the same period. The last result is the 

Joint Effect (t-value = 119.5083, sig <0.0001), which represents the combined effect 

of both types of sign bias, namely negative and positive, is very significant in the 

Statistic Joint 
Statistic 

Mu 
(μ) 

Omega 
(ω) 

Alpha1 
(α1) 

Beta1 
(β1) 

Value 20.6839 10.8105 0.4412 2.669 1.917 
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2000-2018 sunspot data.  

Table 8. Analysis of Sign Bias in Data: T-Value and Probability (sig) 

No. Findings T-Value Probability (sig) 

1 No significant sign bias 0.4007 0.6887 
2 Negative Sign Bias 6.0676 1.367e-09 (*) 
3 Positive Sign Bias 3.4331 6.002e-04 (*) 
4 Joint Effect (Negative & Positive Sign Bias) 119.5083 9.847e-26 (*) 
     (*) A very low probability indicates a high level of significance in the findings. 

The analysis contains four groups of data used to categorize sunspot activity 

during the period, with each group having a different number of observations (20, 30, 

40, and 50). The results of the statistical test using the Adjusted Pearson Goodness-

of-Fit Test method show that the p value (g-1) in each group is 0, the data in each 

group does not match the expected distribution, such as a normal distribution. 

 

Conclusion 

The study provides important findings related to sunspot activity between 2000 

and 2018. Based on the analysis results, significant parameters in understanding 

sunspot characteristics during the period have been identified. The mu parameter has 

a significant estimated value with a high t-statistic, the average sunspot activity is 

significantly different from zero. The variability of sunspot activity represented by the 

omega parameter is also significant, with large fluctuations in the data. The first 

autoregressive parameter (α1) has a strong influence on the prediction of future 

sunspot activity, indicating that past sunspot activity greatly affects current activity. 

In contrast, the first moving average parameter (β1) does not have a significant effect, 

with a very low t-statistic and a very high p-value. The model used in the study is able 

to explain the variation of sunspot data well, with high log-likelihood results and 

model acceptance based on the Akaike criterion which is slightly better than the 

Bayes criterion. The serial correlation test shows a significant correlation at several 

lags, which strengthens the finding that there is a significant relationship between 

sunspot data in different periods. Data stability test shows fluctuations in several 

parameters, sunspot data is generally stable throughout the period studied. 

The study only covered an 18-year period, which is not long enough to capture 

the long-term cycle of sunspot activity or changes that occur on larger time scales. 

Although the model is quite effective in explaining the variability of the data, the use 

of more complex models or other methods such as non-linear models can provide a 

deeper understanding of the sunspot phenomenon. The results of the goodness-of-fit 

test showed that the data did not follow a normal distribution, which could affect the 

validity of some of the statistical inferences used. The study only relied on sunspot 

data and did not take into account other external factors that affect sunspot activity, 

such as variations in the sun's magnetic field, cosmic conditions, or other solar 

activity. 
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Further research should cover a longer period to see the full cycle of sunspot 

activity and to identify long-term trends that may not have been seen in the 2000-

2018 period. Experiments with more complex models, such as chaos models or 

machine learning, are needed to identify subtler patterns in sunspot activity that may 

not be fully explained by the ARMA model. Future research could consider the 

influence of other external factors, such as interactions between solar activity and 

Earth's magnetic field or other cosmic phenomena, to provide a more complete 

picture of sunspot activity. The use of more data, such as data from satellites or other 

observatories, could provide a better understanding of future sunspot behavior and 

the factors that influence it. Further research could use a variety of stability and 

correlation testing methods to ensure stronger conclusions about the long-term 

dynamics of sunspot activity, as well as the influence of external variables on the 

observed patterns. 

 
Acknowledgements 

This research was supported by Universitas Negeri Medan, Medan, Indonesia 

 

References 
[1] Almısshal, B., & Emir, M. (2021). Modelling exchange rate volatility using GARCH 

models. Gazi İktisat ve İşletme Dergisi, 7(1), 1–16. 

[2] Arlt, R., & Vaquero, J. M. (2020). Historical sunspot records. Living Reviews in Solar 

Physics, 17, 1–60. 

[3] Candey, R. (2022). Space Physics Data Facility (SPDF) Data Archives and Services in 

support of Heliophysics Digital Resources Library (HDRL). Authorea Preprints. 

[4] Georgieva, K., & Veretenenko, S. (2023). Solar influences on the Earth’s atmosphere: 

Solved and unsolved questions. Frontiers in Astronomy and Space Sciences, 10, 

1244402. 

[5] Jacobsson, T. J., Hultqvist, A., García-Fernández, A., Anand, A., Al-Ashouri, A., Hagfeldt, 

A., Crovetto, A., Abate, A., Ricciardulli, A. G., & Vijayan, A. (2022). An open-access 

database and analysis tool for perovskite solar cells based on the FAIR data principles. 

Nature Energy, 7(1), 107–115. 

[6] Javaherian, M., & Eskandari, Z. (2023). Review of image processing methods in solar 

photospheric data analyzes. arXiv Preprint arXiv:2310.00380. 

[7] Javaraiah, J. (2020). Long–term variations in solar differential rotation and sunspot 

activity, II: differential rotation around the maxima and minima of solar cycles 12–24. 

Solar Physics, 295(12), 170. 

[8] Jiang, T. (2024). Research on the Relationship between Solar Magnetic Field and Solar 

Activity. Geoscience and Remote Sensing, 7(1), 90–98. 

[9] Kripfganz, S., & Schneider, D. C. (2023). ardl: Estimating autoregressive distributed lag 

and equilibrium correction models. The Stata Journal, 23(4), 983–1019. 



Siagian et al. Modeling … 
 
 
 

78 
 
 

[10] Larsson, K., Green, R., & Benth, F. E. (2023). A stochastic time-series model for solar 

irradiation. Energy Economics, 117, 106421. 

[11] Li, J., Bian, S., Zeng, A., Wang, C., Pang, B., Liu, W., & Lu, C. (2021). Human pose 

regression with residual log-likelihood estimation. 11025–11034. 

[12] Moustafa, S. S., & Khodairy, S. S. (2023). Comparison of different predictive models and 

their effectiveness in sunspot number prediction. Physica Scripta, 98(4), 045022. 

[13] Nandy, D. (2021). Progress in solar cycle predictions: Sunspot cycles 24–25 in 

perspective: Invited review. Solar Physics, 296(3), 54. 

[14] Nazari-Sharabian, M., & Karakouzian, M. (2020). Relationship between sunspot 

numbers and mean annual precipitation: Application of cross-wavelet transform—A case 

study. J, 3(1), 7. 

[15] Ng’ang’a, F. W. (2021). Modelling and forecasting of crude oil price volatility: 

Comparative analysis of volatility models. 

[16] Norsham, N., Hamidi, Z., & Shariff, N. (2022). Correlation between mount wilson 

classifications to solar flares using solar dynamics observatory (SDO) and hinode 

satellites. Journal of Mechanical Engineering (JMechE), 19(1), 113–126. 

[17] Rajaguru, S., & Ravindra, B. (2024). 125 Years Under the Sun: A Chronicle of the 

Kodaikanal Solar Observatory. 

[18] Sakurai, T., & Toriumi, S. (2023). Probability distribution functions of sunspot magnetic 

flux. The Astrophysical Journal, 943(1), 10. 

[19] Schaffer, A. L., Dobbins, T. A., & Pearson, S.-A. (2021). Interrupted time series analysis 

using autoregressive integrated moving average (ARIMA) models: A guide for evaluating 

large-scale health interventions. BMC Medical Research Methodology, 21, 1–12. 

[20] Sholikhah, N. (2020). Simulasi Magnetohidrodinamika Ideal Pada Mekanisme 

Terjadinya Flare Di Matahari. 

[21] Singh, A. K., Bhargawa, A., Siingh, D., & Singh, R. P. (2021). Physics of space weather 

phenomena: A review. Geosciences, 11(7), 286. 

[22] Zaffar, A. (2021). Modeling and Forecasting of Sunspots Cycles: An Application of ARMA 

(p, q)-GARCH (1, 1) Model. Research Square, Research Square. 

[23] Zaffar, A., Sami, S. B., Zafar, H., & Siraj, O. (2024). Forecasting of sunspots cycles 

thorough ANFIS model and ARMA (R, S)-GARCH (1, 1) model. Indian Journal of 

Physics, 1–13. 

 
 


